Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists link variations in growth-factor gene to risk of prostate cancer

18.01.2006


Two variations in the gene for insulin-like growth factor I (IGF-1) are linked to an increased risk of prostate cancer, according to research performed by scientists from the Keck School of Medicine of the University of Southern California, the Broad Institute of Harvard and MIT, and the University of Hawaii.



"Our results suggest that inherited variation in IGF1 may play a role in prostate cancer risk," write the researchers in a paper published in the January 18, 2006, issue of the Journal of the National Cancer Institute.

USC scientists on this research team included: Iona Cheng, who was first author on the paper; Daniel Stram, Ph.D., professor of preventive medicine at the Keck School and the USC/Norris Comprehensive Cancer Center; Malcolm Pike, Ph.D., professor preventive medicine at the Keck School and USC/Norris; and Keck School of Medicine Dean Brian E. Henderson, M.D., who is also a distinguished professor in preventive medicine and neurology and the Kenneth T. Norris Jr. Chair in Cancer Prevention.


Cheng and her colleagues were able to tease out the relevant gene variations using data from the large Multiethnic Cohort study, for which Henderson is co-principal investigator. This population-based cohort study has collected data on more than 215,000 men and women from Los Angeles and Hawaii over the past decade.

From this cohort and information from cancer registries in California and Hawaii, the scientists were able to identify 2320 men who had developed prostate cancer and match them with 2290 men who did not have a prostate cancer diagnosis. This large population, the study’s authors noted, provided "substantial [statistical] power to detect modest genetic effects."

The team knew that high circulating levels of IGF-1 had been linked by previous studies to an increase in prostate cancer risk, and so they focused on that gene and its single-nucleotide polymorphisms (SNPs): tiny point variations in the DNA code for a particular gene. What they found was that several SNPs across the gene were linked to an increased risk of prostate cancer, and two particular SNPs were identified that could account for the genetic associations they observed. Ten percent of the prostate cancer cases in this study could be explained by the variation in DNA sequence of these two polymorphisms.

Because of the ethnic diversity in the cohort’s population--included in the group are African Americans, Hawaiians, Japanese Americans, Latinos and whites--the researchers were also able to look at the risk associated with the two SNPs across the five different ethnic groups. As it turned out, the increase in risk was the same throughout all the sub-groups, "suggesting that the inherited variation in IFG1 behaves similarly among ancestral groups and shares an overall biologic effect," the researchers observed.

"Our study critically evaluates the possibility of false positive results, and important issue faced by genetic association studies, and provides strong support for the involvement of the IGF pathway in the development of prostate cancer," Cheng noted. "By identifying the mechanisms in which inherited differences in IGF1 influence disease, we will further advance our understanding of prostate cancer biology and disease susceptibility."

Kathleen O’Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>