Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC scientists link variations in growth-factor gene to risk of prostate cancer


Two variations in the gene for insulin-like growth factor I (IGF-1) are linked to an increased risk of prostate cancer, according to research performed by scientists from the Keck School of Medicine of the University of Southern California, the Broad Institute of Harvard and MIT, and the University of Hawaii.

"Our results suggest that inherited variation in IGF1 may play a role in prostate cancer risk," write the researchers in a paper published in the January 18, 2006, issue of the Journal of the National Cancer Institute.

USC scientists on this research team included: Iona Cheng, who was first author on the paper; Daniel Stram, Ph.D., professor of preventive medicine at the Keck School and the USC/Norris Comprehensive Cancer Center; Malcolm Pike, Ph.D., professor preventive medicine at the Keck School and USC/Norris; and Keck School of Medicine Dean Brian E. Henderson, M.D., who is also a distinguished professor in preventive medicine and neurology and the Kenneth T. Norris Jr. Chair in Cancer Prevention.

Cheng and her colleagues were able to tease out the relevant gene variations using data from the large Multiethnic Cohort study, for which Henderson is co-principal investigator. This population-based cohort study has collected data on more than 215,000 men and women from Los Angeles and Hawaii over the past decade.

From this cohort and information from cancer registries in California and Hawaii, the scientists were able to identify 2320 men who had developed prostate cancer and match them with 2290 men who did not have a prostate cancer diagnosis. This large population, the study’s authors noted, provided "substantial [statistical] power to detect modest genetic effects."

The team knew that high circulating levels of IGF-1 had been linked by previous studies to an increase in prostate cancer risk, and so they focused on that gene and its single-nucleotide polymorphisms (SNPs): tiny point variations in the DNA code for a particular gene. What they found was that several SNPs across the gene were linked to an increased risk of prostate cancer, and two particular SNPs were identified that could account for the genetic associations they observed. Ten percent of the prostate cancer cases in this study could be explained by the variation in DNA sequence of these two polymorphisms.

Because of the ethnic diversity in the cohort’s population--included in the group are African Americans, Hawaiians, Japanese Americans, Latinos and whites--the researchers were also able to look at the risk associated with the two SNPs across the five different ethnic groups. As it turned out, the increase in risk was the same throughout all the sub-groups, "suggesting that the inherited variation in IFG1 behaves similarly among ancestral groups and shares an overall biologic effect," the researchers observed.

"Our study critically evaluates the possibility of false positive results, and important issue faced by genetic association studies, and provides strong support for the involvement of the IGF pathway in the development of prostate cancer," Cheng noted. "By identifying the mechanisms in which inherited differences in IGF1 influence disease, we will further advance our understanding of prostate cancer biology and disease susceptibility."

Kathleen O’Neil | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>