Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists link variations in growth-factor gene to risk of prostate cancer

18.01.2006


Two variations in the gene for insulin-like growth factor I (IGF-1) are linked to an increased risk of prostate cancer, according to research performed by scientists from the Keck School of Medicine of the University of Southern California, the Broad Institute of Harvard and MIT, and the University of Hawaii.



"Our results suggest that inherited variation in IGF1 may play a role in prostate cancer risk," write the researchers in a paper published in the January 18, 2006, issue of the Journal of the National Cancer Institute.

USC scientists on this research team included: Iona Cheng, who was first author on the paper; Daniel Stram, Ph.D., professor of preventive medicine at the Keck School and the USC/Norris Comprehensive Cancer Center; Malcolm Pike, Ph.D., professor preventive medicine at the Keck School and USC/Norris; and Keck School of Medicine Dean Brian E. Henderson, M.D., who is also a distinguished professor in preventive medicine and neurology and the Kenneth T. Norris Jr. Chair in Cancer Prevention.


Cheng and her colleagues were able to tease out the relevant gene variations using data from the large Multiethnic Cohort study, for which Henderson is co-principal investigator. This population-based cohort study has collected data on more than 215,000 men and women from Los Angeles and Hawaii over the past decade.

From this cohort and information from cancer registries in California and Hawaii, the scientists were able to identify 2320 men who had developed prostate cancer and match them with 2290 men who did not have a prostate cancer diagnosis. This large population, the study’s authors noted, provided "substantial [statistical] power to detect modest genetic effects."

The team knew that high circulating levels of IGF-1 had been linked by previous studies to an increase in prostate cancer risk, and so they focused on that gene and its single-nucleotide polymorphisms (SNPs): tiny point variations in the DNA code for a particular gene. What they found was that several SNPs across the gene were linked to an increased risk of prostate cancer, and two particular SNPs were identified that could account for the genetic associations they observed. Ten percent of the prostate cancer cases in this study could be explained by the variation in DNA sequence of these two polymorphisms.

Because of the ethnic diversity in the cohort’s population--included in the group are African Americans, Hawaiians, Japanese Americans, Latinos and whites--the researchers were also able to look at the risk associated with the two SNPs across the five different ethnic groups. As it turned out, the increase in risk was the same throughout all the sub-groups, "suggesting that the inherited variation in IFG1 behaves similarly among ancestral groups and shares an overall biologic effect," the researchers observed.

"Our study critically evaluates the possibility of false positive results, and important issue faced by genetic association studies, and provides strong support for the involvement of the IGF pathway in the development of prostate cancer," Cheng noted. "By identifying the mechanisms in which inherited differences in IGF1 influence disease, we will further advance our understanding of prostate cancer biology and disease susceptibility."

Kathleen O’Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>