Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo collaboration identifies gene in childhood kidney disease


New insight into related disorders

An international research collaboration led by Mayo Clinic has identified a new gene involved in causing the inherited kidney disorder, Meckel-Gruber syndrome (MKS). Children with MKS have central nervous system deformities as well as abnormal cysts in their kidneys, and usually die shortly after birth. The findings appear in the current edition of Nature Genetics ( In addition to Mayo Clinic, the collaboration involved researchers from the Indiana University School of Medicine in Indianapolis, and the University of Birmingham, England.

Significance of the Finding

This news is of immediate importance to MKS families who may now have their blood screened for the defect and seek genetic counseling. The finding also is important for advancing understanding of what goes wrong in common birth defects, such as neural tube defects, as well as for related disorders such as more common forms of polycystic kidney disease (PKD). PKD accounts for more than 5 percent of end-stage kidney disease in the United States and Europe.

"This gene has immediate relevance for a small number of families, but the broader implications are important for the understanding they bring of how cysts develop in the kidney," explains Peter Harris, Ph.D., the Mayo Clinic nephrology researcher who led the research team. "There is a kind of common linkage among these diseases. Our hope is that this new finding will aid us to devise new treatments for a broad category of disabling disease."

Meckel-Gruber kidney disease is separate from, though related to, PKD in that some of the same things go wrong to cause the abnormal formation of cysts that disrupt kidney function. Knowing the identity of one key gene involved in MKS is a first step to understanding the disorder and eventually devising therapies to blunt its effects. Treatments are being developed for the more common forms of polycystic kidney disease.

The current work is an extension of Mayo researchers’ groundbreaking work for more than a decade that has helped to reveal the genetic basis of PKD and to develop therapies. In that time, Mayo researchers have identified key genes driving the most common form of the disease in adults and in infants.

Method: From Rat to Humans

The research collaboration brought together Mayo’s expertise in polycystic disease genetics with an animal model characterized in Indiana: a rat that mimicked PKD but that also showed symptoms of abnormal brain development. These clinical characteristics linked to a gene made this a useful model for an atypical form of PKD. The researchers identified the neighborhood in the model’s genome where the error likely occurred, ultimately finding one gene that was defective. They then looked at the same neighborhood in the human genome for evidence of a disease with symptoms similar to the model (the bottom of chromosome 8) and found Meckel-Gruber syndrome type 3 (MKS3). Screening the corresponding gene, they identified similar changes in the MKS3 patients (characterized by the Birmingham group) and identified the disease gene.

Robert Nellis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>