Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloned stem cells prove identical to fertilized stem cells

17.01.2006


Scientists generally agree that all cloned animals are biologically flawed. But they don’t agree about what that means for stem cells derived from cloned embryos, the basis for therapeutic cloning.



Also known as somatic cell nuclear transfer, therapeutic cloning is a promising approach to create individually customized cellular therapies for treating certain disorders. Demonstrated in mice but not in humans, it begins with stem cells derived from a cloned embryo. But if cloned embryos can’t produce normal organisms, how can they produce normal stem cells?

Analyzing the complete gene-expression profiles of both cloned and fertilization-derived stem cells in mice, scientists at Whitehead Institute for Biomedical Research now have concluded that the two are, in fact, indistinguishable.


"This paper demonstrates clearly that it doesn’t matter if a stem cell has been derived from a cloned embryo or from a fertilized embryo," says Whitehead Member Rudolf Jaenisch, senior author on the paper that will appear in the online the week of January 16 in the Proceedings of the National Academy of Sciences. "Both can be equally good for therapy."

To create a clone, a scientist removes the nucleus from a donor cell, then places it into an egg from which the nucleus has been removed. The researcher then tricks the egg into thinking it’s been fertilized. The egg develops into a blastocyst, an early stage embryo consisting of no more than 100 or so cells. The scientist can then either remove the stem cells from this blastocyst, or place it into a uterus where it has the potential to develop into a fetus.

Here’s where things get complicated. The original donated nucleus may have come from, say, a skin cell. For a viable fetus to develop, the egg needs to reprogram the genome of the skin cell, shutting off genes specific for skin tissue and turning on genes needed for embryonic development, genes that are normally dormant in tissue-specific cells. In other words, the egg needs to erase all tissue-specific memories from the skin cell and revert it into a genomic blank slate.

But this entire process is almost never perfect, and nearly all cells in a cloned blastocyst retain some memory of their original source. As a result, the developing fetus inevitably has some degree of genetic abnormality. Most clones, in fact, die in utero or at birth. The few clones that make it into adulthood are often plagued by bizarre health complications. This is one reason why scientists generally believe that attempting to clone a human being is morally reprehensible.

But are the cloned embryo’s stem cells beleaguered by the same defects?

Studies have demonstrated that a small number of stem cells in the blastocyst appear to be spared this faulty reprogramming. When stem cells from a cloned blastocyst are removed and placed into a dish, most die. A few, however, survive and give rise to an embryonic stem cell line, and these appear to be thoroughly reprogrammed.

Researchers have tried to test the integrity of these surviving stem cells by transplanting them into fertilized blastocysts and then observing the overall health of the resulting animal. Although these animals generated entirely from cloned stem cells appear to be fine, many scientists don’t accept this result as definitive.

Tobias Brambrink, a postdoctoral researcher in the Jaenisch lab, tried a different approach, comparing gene expression in cloned and fertilization-derived stem cells. With a series of microarray chips, Brambrink measured which genes were active and which were silent in both kinds of cells. To ensure the accuracy of his results, he compared five lines of cloned stem cells with five fertilization-derived stem cell lines.

"The results are very clear," says Brambrink. "If a gene is active in fertilized stem cells, it’s also active in cloned stem cells, and at the same level of activity. The same goes for genes that are silent. There is really no significant molecular difference between both kinds of stem cells."

"In my opinion, these results solidify the argument that while a cloned animal is abnormal, a cloned stem cell is perfectly normal," says Jaenisch.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>