Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glycoprotein hormone receptors

17.01.2006


A perfect model to study GPCR activation and dimerization



We have aspired at understanding and further dissecting the molecular mechanism of activation of the Glycoprotein hormone receptors (GpHr), members of the G protein coupled receptor (GPCR) superfamily.

First, we have focused on a network of polar interactions among highly conserved residues within the transmembrane (TM) region. Combination of site-directed mutagenesis and molecular dynamics simulations applied to the thyrotropin receptor (TSHr) have allowed identification of the residue N7.49, belonging to the canonical NPxxY motif of TM 7, as a molecular control in the mechanism of TSHr activation. N7.49 appears to adopt two different conformations in the inactive and active states. The inactive conformation is maintained by interactions with residues T6.43 and D6.44 (GpHr specific residues, located at the bottom of TM 6). Mutations that disrupt these interactions result in constitutive receptor activation. Our data suggest that upon receptor activation N7.49 undergoes a conformational change and that it might interact with D2.50 and a charged residue not identified yet. Moreover, the conserved L2.46 of the (N/S)LxxxD motif also seems to play a significant role in restraining the receptor in the inactive state.


On the other hand, growing body of evidence indicates that the GPCRs function as oligo(di)mers. Therefore we have used the GpHr family as a model to study the possible functional consequences of this oligomerization process. We first demonstrated in recombinant living cells, with a combination of biophysical methodologies (BRET and HTRF/FRET), that the TSH and lutropin (LH/CG) receptors form homo- and heterodimers, via interactions involving, primarily, their heptahelical domains. The large hormone-binding ectodomains were not essential for dimerization but adjusted protomer interaction. Contrary to a previous report, activation did not affect dimerization. Functional complementation, chieved by coexpression of mutant receptors unable to bind or signal, indicates that TSHr dimers may function as a single functional unit. Notably, heterologous binding-competition studies performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Furthermore, radioligand desorption experiments highlighted an allosteric behavior in TSHr (confirmed in a native system) and, to a lesser extent, in LH/CGr and FSHr homodimers. This phenomenon seems to be a common property within the entire GPCR superfamily.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=854

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>