Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glycoprotein hormone receptors

17.01.2006


A perfect model to study GPCR activation and dimerization



We have aspired at understanding and further dissecting the molecular mechanism of activation of the Glycoprotein hormone receptors (GpHr), members of the G protein coupled receptor (GPCR) superfamily.

First, we have focused on a network of polar interactions among highly conserved residues within the transmembrane (TM) region. Combination of site-directed mutagenesis and molecular dynamics simulations applied to the thyrotropin receptor (TSHr) have allowed identification of the residue N7.49, belonging to the canonical NPxxY motif of TM 7, as a molecular control in the mechanism of TSHr activation. N7.49 appears to adopt two different conformations in the inactive and active states. The inactive conformation is maintained by interactions with residues T6.43 and D6.44 (GpHr specific residues, located at the bottom of TM 6). Mutations that disrupt these interactions result in constitutive receptor activation. Our data suggest that upon receptor activation N7.49 undergoes a conformational change and that it might interact with D2.50 and a charged residue not identified yet. Moreover, the conserved L2.46 of the (N/S)LxxxD motif also seems to play a significant role in restraining the receptor in the inactive state.


On the other hand, growing body of evidence indicates that the GPCRs function as oligo(di)mers. Therefore we have used the GpHr family as a model to study the possible functional consequences of this oligomerization process. We first demonstrated in recombinant living cells, with a combination of biophysical methodologies (BRET and HTRF/FRET), that the TSH and lutropin (LH/CG) receptors form homo- and heterodimers, via interactions involving, primarily, their heptahelical domains. The large hormone-binding ectodomains were not essential for dimerization but adjusted protomer interaction. Contrary to a previous report, activation did not affect dimerization. Functional complementation, chieved by coexpression of mutant receptors unable to bind or signal, indicates that TSHr dimers may function as a single functional unit. Notably, heterologous binding-competition studies performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Furthermore, radioligand desorption experiments highlighted an allosteric behavior in TSHr (confirmed in a native system) and, to a lesser extent, in LH/CGr and FSHr homodimers. This phenomenon seems to be a common property within the entire GPCR superfamily.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=854

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>