Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the UJI design a fluorescent sensor capable of measuring intracellular acidity

17.01.2006


The colouring agents traditionally used to stain organic tissues are no longer sufficient to meet today’s needs. The study of cell metabolism can only advance with better tools than those currently available. It has become necessary to observe smaller things at lower concentrations and one of these things is the degree of intracellular acidity or pH. Any organism works at pH levels close to those of ordinary water, but there are certain biological processes that take place in unusually acidic areas. Until now it has been impossible to carry out a thorough study of these processes because of the lack of optimal instruments with which to measure acidity. However, this is beginning to change. Working in collaboration with scientists from the University of East Anglia (UK), researchers at the Universitat Jaume I (UJI) in Castellón, Spain, have developed a fluorescent molecule that measures intracellular pH.



The molecule works like a luminous thermometer in which bulbs light up or go out as changes in temperature take place. In this case, the intensity of the fluorescent light given off by the molecule varies according to the level of acidity of the sample, that is, the lower the acidity, the less light is emitted, and vice versa. The sensitivity of the sensor designed by the scientists at the Department of Inorganic and Organic Chemistry at the UJI ranges from pH6 to 4, which is an acidity value half a point higher than previous sensors were capable of measuring.

One of the advantages of the molecule is that, because it is a pseudoprotein, it is compatible with living organisms. For the researchers, the fluorescent molecule is a fundamental tool for the study of certain biological processes associated to high levels of acidity. This is the case, for example, of cellular processes involving nitric oxide, a compound that is linked to many physiological processes such as the control of blood pressure and contraction of the heart muscle.


“This nitric oxide can act in different ways, depending on the pH of the organelle it is located in. Therefore, unless we know the value of the pH we are working in, we will never be able to define exactly how the nitric oxide is behaving. And this is something that is essential in cell metabolism,” explains Santiago Luis Lafuente, Professor of Organic Chemistry at the UJI and head of the research team. Thus, this new molecule will allow researchers to gain further knowledge about the role of nitric oxide in both normal and pathological cell processes.

The researchers also believe that in the future the acidity sensor could be used as a tool to diagnose cancer, since it has been observed that tumorous cells have a higher degree of acidity than normal ones, “so cancerous tissue could be characterised as a tissue where there is a variation in the pH level,” says Santiago Luis. The researchers also point out, however, that the use of the acidity sensor in the early detection of cancerous cells is, at the present time, still only a possibility and far from being a reality.

The study, recently reported in the Journal Angewandte chemie International edition, was conducted by the researchers Francisco Galindo, Mª Isabel Burguete, Laura Vigara, Santiago V. Luis, from the Universitat Jaume I, and Nurul Kabir, Jelena Gavrilovic and David A. Russel, from the University of East Anglia.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=5411674
http://www.uji.es

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>