Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at the UJI design a fluorescent sensor capable of measuring intracellular acidity

17.01.2006


The colouring agents traditionally used to stain organic tissues are no longer sufficient to meet today’s needs. The study of cell metabolism can only advance with better tools than those currently available. It has become necessary to observe smaller things at lower concentrations and one of these things is the degree of intracellular acidity or pH. Any organism works at pH levels close to those of ordinary water, but there are certain biological processes that take place in unusually acidic areas. Until now it has been impossible to carry out a thorough study of these processes because of the lack of optimal instruments with which to measure acidity. However, this is beginning to change. Working in collaboration with scientists from the University of East Anglia (UK), researchers at the Universitat Jaume I (UJI) in Castellón, Spain, have developed a fluorescent molecule that measures intracellular pH.



The molecule works like a luminous thermometer in which bulbs light up or go out as changes in temperature take place. In this case, the intensity of the fluorescent light given off by the molecule varies according to the level of acidity of the sample, that is, the lower the acidity, the less light is emitted, and vice versa. The sensitivity of the sensor designed by the scientists at the Department of Inorganic and Organic Chemistry at the UJI ranges from pH6 to 4, which is an acidity value half a point higher than previous sensors were capable of measuring.

One of the advantages of the molecule is that, because it is a pseudoprotein, it is compatible with living organisms. For the researchers, the fluorescent molecule is a fundamental tool for the study of certain biological processes associated to high levels of acidity. This is the case, for example, of cellular processes involving nitric oxide, a compound that is linked to many physiological processes such as the control of blood pressure and contraction of the heart muscle.


“This nitric oxide can act in different ways, depending on the pH of the organelle it is located in. Therefore, unless we know the value of the pH we are working in, we will never be able to define exactly how the nitric oxide is behaving. And this is something that is essential in cell metabolism,” explains Santiago Luis Lafuente, Professor of Organic Chemistry at the UJI and head of the research team. Thus, this new molecule will allow researchers to gain further knowledge about the role of nitric oxide in both normal and pathological cell processes.

The researchers also believe that in the future the acidity sensor could be used as a tool to diagnose cancer, since it has been observed that tumorous cells have a higher degree of acidity than normal ones, “so cancerous tissue could be characterised as a tissue where there is a variation in the pH level,” says Santiago Luis. The researchers also point out, however, that the use of the acidity sensor in the early detection of cancerous cells is, at the present time, still only a possibility and far from being a reality.

The study, recently reported in the Journal Angewandte chemie International edition, was conducted by the researchers Francisco Galindo, Mª Isabel Burguete, Laura Vigara, Santiago V. Luis, from the Universitat Jaume I, and Nurul Kabir, Jelena Gavrilovic and David A. Russel, from the University of East Anglia.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=5411674
http://www.uji.es

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>