Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ’nanosprings’ most resilient found in nature

16.01.2006


A component of many proteins has been found to constitute one of the most powerful and resilient molecular "springs" in nature, researchers have discovered. The engineers and biologists from Duke University and the Howard Hughes Medical Institute say their discovery could lead to a new understanding of mechanical processes within the living cell. The discovery also could provide potent nanoscale "shock absorbers" or "gate-opening springs" in tiny nanomachines.



The team’s findings were published in an advanced online publication of Nature on Jan. 15, 2006.

The finding that the protein components, called "ankyrin repeats," exhibit such unprecedented elastic properties could lead to a new understanding of how organisms, including humans, sense and respond to physical forces at the cellular level, the researchers said. The nanometer-sized springs are also ideal candidates for building biologically-inspired springy nanostructures and nanomaterials with an inherent ability to self-repair, they reported. A nanometer is one billionth of a meter.


"Whereas other known proteins can act like floppy springs, ankyrin molecules behave more like steel," said Piotr Marszalek, professor of mechanical engineering and materials science at the Duke Pratt School of Engineering. "After repeated stretching, the molecules immediately refold themselves, retaining their shape and strength."

"The fully extended molecules not only bounce back to their original shape in real time, but they also generate force in the process of this rapid refolding – something that had never been seen before," added HHMI investigator Vann Bennett, professor of cell biology at Duke University Medical Center. "It’s the equivalent of un-boiling an egg."

Marszalek and Bennett are participants in the Duke University Center for Biologically Inspired Materials and Material Systems. The research was supported by Duke University and the National Science Foundation.

Ankyrin repeats consist of tandem modules of about 33 amino acids, the researchers said. Found in a large number of functionally diverse proteins in organisms ranging from plants to humans, ankyrin repeats are one of the most common protein-protein interaction motifs in nature.

Ankyrin repeats of varying lengths appear in more than 400 human proteins expressed in many tissues, Bennett said. For example, ankyrin repeats are found in association with specialized hair cells of the inner ear, where they play a critical role in converting sound (a mechanical stimulus) into an electrical signal that can be transmitted to the brain – a process known as mechanotransduction.

Ankyrin proteins also coordinate the ion channels and transporters that control the beating of the heart. In 2004, Bennett’s team linked mutations in the gene ankyrin-B to an inherited cardiac arrhythmia syndrome that can lead to sudden death.

Earlier study of the atomic structure of 12 ankyrin repeats suggested that ankyrin proteins consisting of 24 or more repeats might form a super-helical spiral with spring-like properties, the researchers said.

Using atomic force microscopy (AFM) to view individual molecules in the current study, Marszalek and Pratt research associate Yong Jiang found that ankyrin repeats indeed display a hook-like shape consistent with a spring. AFM is a technique for analyzing the surface of materials all the way down to the level of the atom. Marszalek and Pratt graduate student Gwangrog Lee further examined the molecules’ elastic properties by attaching one end of the molecules to a glass slide and gently pulling at the other end with the AFM cantilever.

"After thousands of stretches, a pattern emerged," Marszalek said. "The molecule exhibited linear elasticity--a property that had never been seen in any other protein."

The ankyrin repeats act like linear springs, meaning that their tension is directly proportional to their extension, Marszalek explained. In contrast, the majority of elastic proteins that have been studied previously display a highly nonlinear behavior typical of polymers, he said.

In the course of this discovery, the researchers also observed something unexpected: as long as they stopped stretching the molecules before they were completely unfolded, the extension was fully and immediately reversible.

The ankyrin repeats showed no sign of wear after multiple stretch-relaxation cycles over a large range of applied forces, the team found. When extended past their breaking points, the molecules exhibited a saw-tooth pattern of regularly spaced force peaks as individual repeats unraveled one by one, they said.

After this complete unfolding of the protein, the researchers observed that ankyrin repeats were able to rapidly refold and that process of refolding generated significant force, they reported.

"This, to our knowledge, is the first report of the magnitude of the refolding force of a protein domain obtained through direct measurements on single molecules," the researchers said.

The team speculates that the linear elasticity of 24 ankyrin repeats may play an important biological role in adjusting ankyrin-associated transporters in response to mechanical strain or in generating tension in cell membranes. The unusually strong tendency of ankyrin repeats to refold might also play a significant role in the function of proteins having fewer repeats.

"Ankyrins appear to have a very unusual structural design – consisting of short anti-parallel alpha helices that self-assemble into stacks -- that allows them to quickly and robustly unfold and refold," Bennett said. "It’s hard to believe, but it happens. You have to wonder whether their structure plays an important functional role in sensing forces." Alpha helices are common protein structures, characterized by a single, spiral chain of amino acids stabilized by hydrogen bonds.

"We live in a world of forces," Bennett continued. "For example, every time a neuron pushes its way through body tissues to its target, every time a heart beats, or a bicep muscle contracts, forces are generated. Cells have to recognize those forces and adjust accordingly."

The tension created by the ankyrin springs could allow for very rapid translation of mechanical forces into biochemical signals, he said.

The proteins’ spring-like properties could also be important for furthering the development of nanotechnology, Marszalek added.

"These nanosprings could provide a wonderful material anytime you need to provide elasticity or force," Marszalek said. "They could open gates, for example, or could perhaps act as shock absorbers in nanomachines of the future."

The researchers plan further work to understand what makes the structure of ankyrin repeats so special and to demonstrate the functional role of this structure to particular ankyrin proteins, such as those involved in hearing, the researchers said. The team will also investigate whether longer springs would maintain the same elastic properties, a finding with important implications for including such proteins in nanodevices.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu
http://www.dukemednews.org/news/article.php?id=9389

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>