Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies molecule essential for proper localization of blood stem cells

16.01.2006


Result supports interaction between bone formation and production of blood, immune cells



Scientists at the Massachusetts General Hospital (MGH) Center for Regenerative Medicine and the Harvard Stem Cell Institute (HCSI) have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production. The discovery may help improve bone marrow stem cell transplantation and the treatment of several blood disorders.

"This is another remarkable example of how bone and bone marrow interact. A receptor known to participate in the body’s regulation of calcium and bone also is critical for stem cells to engraft in the bone marrow and regenerate blood and immune cells," says David Scadden, MD, director of the MGH Center for Regenerative Medicine and co-director of the HSCI. "It reminds us how tissues interact and how looking closely at where stem cells reside may tell us a lot about how to manipulate them." Scadden is senior author of the report, which will be published in the journal Nature and has received early online release.


Hematopoietic or blood stem cells are critical to the daily production of over 10 billion blood cells and are the basis for bone marrow transplant therapy for cancer. Rare and difficult to identify, these cells are extremely powerful at regenerating blood and immune cells but only if they travel to the proper location when introduced into the body. Typically the cells are infused into a vein, and they find their way to the bone marrow through a process that depends on largely unknown molecules.

Within the bone marrow cavity, stem cells are usually found in the outer layer close to the inner surface of the bone. Since the process of remodeling bone takes place in the adjacent bone tissue and because studies by Scadden’s group and others have shown that bone-forming osteoblast cells are essential to the regulation of the stem cell environment, it seemed probable that fundamental interactions exist between the processes of bone formation and stem cell development. As increased extracellular calcium is required for bone formation, the researchers theorized that a molecule called the calcium-sensing receptor (CaR), present on many cells, might be key to the localization of blood stem cells.

To test their theory, the researchers first verified the presence of CaR on primitive marrow cells taken from normal mice. They then ran several experiments using transgenic mice that do not produce the CaR protein and found that, while many types of marrow and adjacent bone cells were present in normal proportions, levels of blood stem cells were very low in the marrow cavities of the transgenic mice. Other experiments showed that the absence of other cell-surface molecules did not affect the numbers of stem cells in the marrow.

Examination of the spleens and the blood of the transgenic mice showed that the numbers of primitive blood stem cells were significantly elevated in those areas, indicating that the absence of CaR did not affect the production of stem cells by the fetal liver. In a group of normal mice that received radiation at doses that would destroy the bone marrow, transplantation of fetal liver cells from mice with and without CaR allowed the animals to survive, but those who received cells from CaR-negative mice had dramatically fewer stem cells in their bone marrow. Additional experiments showed that the CaR-negative cells were unable to adhere to collagen I, an essential bone protein produced by the osteoblasts.

"Since there are already drugs available that target this receptor, we may be able to quickly adapt these findings in animals to the treatment of human patients," says Scadden, who is a professor of Medicine at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>