Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key heart and Alzheimer’s disease protein imaged for first time in native state

16.01.2006


Researchers for the first time have created a three-dimensional image of apolipoprotein E, a protein long associated with cardiovascular disease and more recently with Alzheimer’s disease, as it appears when it is bound to fat-like substances known as lipids.



Using the technique known as x-ray crystallography, scientists at the Gladstone Institute of Cardiovascular Disease (GICD) have created the highest-resolution x-ray structure of a lipoprotein particle to date.

The work focuses apoE4, one of three specific forms of apolipoprotein E, commonly known as apoE. The breakthrough has already answered long-standing questions about the configuration of apoE4 in its active, or native, state. A complete understanding of the protein’s functioning will be a key factor for development of future therapeutic interventions, according to the researchers.


Details of the works are reported in the January 13 edition of the Journal of Biological Chemistry.

"This is the first successful use of x-ray crystallography to reveal the structure of a protein bound to lipids," explains senior author Karl Weisgraber, PhD, a senior investigator at both GICD and the Gladstone Institute of Neurological Disease (GIND). "It’s crucial to understand this molecule, since it plays such a pivotal role in both cardiovascular and neurological disease.

X-ray crystallography is a technique for determining the three-dimensional structure of a molecule by analyzing the x-ray diffraction patterns of crystals that make up the molecule.

"The next step is higher resolution, going from the current 10 angstroms to 3.5 or better," adds Weisgraber, who is also a professor of pathology at the University of California, San Francisco.

Lipid-bound proteins change their shape once they’ve bound to a lipid and have begun their key functions. "Until now, we’ve only been able to model the lipid-free structures of these proteins, and now we can begin learning about their lipid-bound forms," says lead author Clare Peters-Libeu, a GICD and GIND research scientist. "It’s a huge step forward for those of us involved in the field."

ApoE, and particularly apoE4, has long been studied for its role as a lipid transport protein and its involvement in cardiovascular disease. Much of the pioneering work on this molecule has been done at Gladstone since the institutes’ founding in 1979, led by researchers, including Weisgraber, who had been studying the protein at the National Institutes of Health before transitioning to Gladstone.

In the late 1980s, apoE emerged as a major player in neurological disease, based in part on observations made at Gladstone. Next to one’s age, the greatest known risk factor for Alzheimer’s disease is the gene for apoE4. ApoE4 is associated with 40-60 percent of cases of sporadic and familial Alzheimer’s.

Everyone inherits two copies, or alleles, of every gene, one from each parent, Weisgraber explains. As the number of apoE4 alleles increases from 0 to 2, the risk of AD increases from 20 to 90 percent, and the typical age of onset decreases from 84 years to 68 years. The presence of one apoE4 allele results in an estimated 45 percent chance of developing Alzheimer’s by 85 years of age. With two apoE4 alleles, the risk increases to 50–90 percent.

"Insights into the basic biology of apoE--and particularly apoE4--gained by Gladstone scientists have been invaluable in the study of Alzheimer’s disease," says Peters-Libeu. "Gaining a complete, three-dimensional understanding of its configuration in its native, lipid-bound state will inevitably lead to even more insights into its role in cardiovascular and neurological disease in the years to come."

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu/gladstone/site/publicaffairs/section.php?id=1617
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>