Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-specific Ebola therapies protect non-human primates from lethal disease

16.01.2006


Scientists have developed a successful strategy for interfering with Ebola virus infection that protected 75 percent of nonhuman primates exposed to the lethal disease. This is the first successful antiviral intervention against filoviruses like Ebola in nonhuman primates. The findings could serve as the basis for a new approach to quickly develop virus-specific therapies for known, emerging, and genetically engineered pathogens.



In today’s online issue of the journal Public Library of Science Pathogens, a research team led by Sina Bavari and colleagues at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) reports using novel "antisense" drugs to interrupt normal Ebola virus replication. The work was performed in collaboration with AVI BioPharma, a U.S. biotechnology firm.

According to the study’s authors, antisense drugs are useful against viral diseases because they are designed to enter cells and eliminate viruses by preventing their replication. The drugs, which act by blocking critical viral genetic sequences, may be more potent than anti-virals such as protease inhibitors, which seek to inhibit a protein needed for viral replication.


Ebola virus causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol (although more commonly spread through blood and bodily fluids of infected patients), is of concern both as a global health threat and a potential agent of biological warfare or terrorism. Currently there are no available vaccines or therapies.

"One advantage of this strategy is that it directly targets the virus," said the paper’s first author, Kelly L. Warfield. "With Ebola infection, the virus grows so fast that it overtakes the host immune system. What we did, essentially, was to hold off the viral replication long enough for the host to mount an immune response and clear the virus."

Working with a class of compounds known as antisense phosphorodiamidate morpholino oligomers, or PMOs, the team first performed a series of studies to identify PMOs that demonstrated activity against Ebola virus. Next, three of the PMOs were tested in mice, both individually and in combination. The combination of all three was found to be the most effective therapeutic approach in mice, whether the PMOs were administered before or after Ebola infection. Combination therapy was also tested in guinea pigs, where it appeared to be most effective when administered after infection.

To further evaluate the efficacy of the three-PMO combination, four rhesus monkeys were treated with the drug two days prior to Ebola virus exposure. Three of the four were protected from Ebola infection.

"These results, while preliminary, are very encouraging," said Colonel George W. Korch, USAMRIID commander, "especially when you consider that Ebola virus has, to date, been fairly intractable to effective treatment. We look forward to additional findings of success using these PMOs."

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil
http://www.usamriid.army.mil
http://www.avibio.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>