Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-specific Ebola therapies protect non-human primates from lethal disease

16.01.2006


Scientists have developed a successful strategy for interfering with Ebola virus infection that protected 75 percent of nonhuman primates exposed to the lethal disease. This is the first successful antiviral intervention against filoviruses like Ebola in nonhuman primates. The findings could serve as the basis for a new approach to quickly develop virus-specific therapies for known, emerging, and genetically engineered pathogens.



In today’s online issue of the journal Public Library of Science Pathogens, a research team led by Sina Bavari and colleagues at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) reports using novel "antisense" drugs to interrupt normal Ebola virus replication. The work was performed in collaboration with AVI BioPharma, a U.S. biotechnology firm.

According to the study’s authors, antisense drugs are useful against viral diseases because they are designed to enter cells and eliminate viruses by preventing their replication. The drugs, which act by blocking critical viral genetic sequences, may be more potent than anti-virals such as protease inhibitors, which seek to inhibit a protein needed for viral replication.


Ebola virus causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol (although more commonly spread through blood and bodily fluids of infected patients), is of concern both as a global health threat and a potential agent of biological warfare or terrorism. Currently there are no available vaccines or therapies.

"One advantage of this strategy is that it directly targets the virus," said the paper’s first author, Kelly L. Warfield. "With Ebola infection, the virus grows so fast that it overtakes the host immune system. What we did, essentially, was to hold off the viral replication long enough for the host to mount an immune response and clear the virus."

Working with a class of compounds known as antisense phosphorodiamidate morpholino oligomers, or PMOs, the team first performed a series of studies to identify PMOs that demonstrated activity against Ebola virus. Next, three of the PMOs were tested in mice, both individually and in combination. The combination of all three was found to be the most effective therapeutic approach in mice, whether the PMOs were administered before or after Ebola infection. Combination therapy was also tested in guinea pigs, where it appeared to be most effective when administered after infection.

To further evaluate the efficacy of the three-PMO combination, four rhesus monkeys were treated with the drug two days prior to Ebola virus exposure. Three of the four were protected from Ebola infection.

"These results, while preliminary, are very encouraging," said Colonel George W. Korch, USAMRIID commander, "especially when you consider that Ebola virus has, to date, been fairly intractable to effective treatment. We look forward to additional findings of success using these PMOs."

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil
http://www.usamriid.army.mil
http://www.avibio.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>