Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins waddle but they don’t fall down

13.01.2006


Study of cuddly creatures focuses on walking stability with applications for elderly, robots



With their feathery tuxedoes and charming Chilly Willy-waddle, penguins are the quintessence of cute. Small wonder they’re featured in Coke commercials, movies like "Madagascar" and "March of the Penguins" and children’s toys galore.

But one University of Houston professor is looking into a serious side of these ultra-cute creatures. Dozens of teeter-tottering penguins are the subjects of a research project investigating balance and locomotion.


"Compared to other terrestrial animals, penguins have an excessive amount of side-to-side, waddling motion," Max Kurz, UH Health and Human Performance professor said. "If humans waddle too much they fall, but penguins somehow overcome this. They may have an elegant movement strategy for stability that we’re unaware of."

Kurz hopes that learning about the penguin’s distinctive waddle will help those with walking challenges, such as the elderly, those with leg or foot injuries and toddlers learning to walk. The research findings could even allow the development of more mobile robots.

His study on walking stability features dozens of King penguins from Moody Gardens in Galveston. Though these endearing animals may seem unsuited for rough terrain, penguins will travel more than 75 miles across rugged ground terrain to reach their nesting sites. Kurz believes the penguins have learned to use the waddling motion in a way that makes their movements more efficient, adjusting for the limitations of the size of their legs and their weight. Humans, on the other hand, have not developed such a mechanism to adjust for such dramatic side-to-side motion. So, if we simply waddle, chances are we’ll fall, but some aspects of a penguin’s wobble could be very beneficial.

"We can envision a scenario where elderly may be able to put their walkers or canes down because they’ve learned to make the same adjustments in their walking patterns," Kurz said. "This research may aid in developing a way to teach those people how to walk more efficiently despite their side-to-side motion, to learn the same kind of stability as the penguin."

Another application for this research involves the construction of sophisticated robots. Kurz said it is very expensive to construct a robot that can successfully adjust to side to side, or medial-lateral, motion. Robots currently in use, such as the Asimo robot that mimics human walking patterns, have large, expensive and cumbersome computers built onto their "bodies" to keep them from tipping over when they walk and run. His research can be used to build smaller computers for such robots that will become increasingly more life-like.

"There is not much research on this issue, so we’re hopeful about the results," Kurz said.

To facilitate his study, Kurz has created a special platform that contains a pressure mat. As penguins walk across the mat, it measures the variability in the width and length of their steps. The data will provide insight into the natural mechanics and stability of the penguins’ walking patterns.

Kurz is collaborating with biologists at Moody Gardens, a public, nonprofit educational destination utilizing nature in the advancement of rehabilitation, conservation, recreation and research.

"This study provides a unique opportunity to have direct access to an aspect of the natural world that would otherwise be inaccessible," Greg Whittaker, Moody Gardens animal husbandry manager, said. "This research also may have real applications in addressing skeletal deformities that occasionally occur in captive penguins. By establishing the normal mechanics of penguin walking, we can better understand how to recognize and deal with abnormalities."

King penguins were chosen because of their hefty size. Smaller birds, such as the rock hopper penguins, were too lightweight to register data on the mat. King penguins, second in size only to the larger Emperor penguins, are three feet tall on average and can tip the scales at up to 35 pounds. And they were also very eager to perform.

"It’s almost like playtime for them. We can’t hold them back," Kurz said. "There is one in particular that always wants to cut in front of the other penguins, so that he can walk across the mat first. It’s pretty cute."

Just why penguins (or pandas or kittens) seem so "cute" to humans isn’t as measurable as their gait, but some researchers speculate that this may be rooted in the animals’ perceived vulnerability, lack of threat and soft physiques.

For UH researcher Kurz, his subjects’ funny, cuddly nature is just an incidental advantage.

His current research will provide a springboard for future studies on the unique locomotive strategies of penguins. Next, he will examine the running patterns of the penguins. And if you think penguins are cute waddling, just wait till you see them in a hurry.

As comical as his subjects may be, Kurz remains a scientist first and an amused spectator second.

"You can’t help smiling," Kurz said, "but this is serious research, and the results could make a real difference in many people’s lives."

Marisa Ramirez | EurekAlert!
Further information:
http://www.hhp.uh.edu
http://www.uh.edu/admin/media/nr/2005/12dec/121205penguinvideo.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>