Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguins waddle but they don’t fall down

13.01.2006


Study of cuddly creatures focuses on walking stability with applications for elderly, robots



With their feathery tuxedoes and charming Chilly Willy-waddle, penguins are the quintessence of cute. Small wonder they’re featured in Coke commercials, movies like "Madagascar" and "March of the Penguins" and children’s toys galore.

But one University of Houston professor is looking into a serious side of these ultra-cute creatures. Dozens of teeter-tottering penguins are the subjects of a research project investigating balance and locomotion.


"Compared to other terrestrial animals, penguins have an excessive amount of side-to-side, waddling motion," Max Kurz, UH Health and Human Performance professor said. "If humans waddle too much they fall, but penguins somehow overcome this. They may have an elegant movement strategy for stability that we’re unaware of."

Kurz hopes that learning about the penguin’s distinctive waddle will help those with walking challenges, such as the elderly, those with leg or foot injuries and toddlers learning to walk. The research findings could even allow the development of more mobile robots.

His study on walking stability features dozens of King penguins from Moody Gardens in Galveston. Though these endearing animals may seem unsuited for rough terrain, penguins will travel more than 75 miles across rugged ground terrain to reach their nesting sites. Kurz believes the penguins have learned to use the waddling motion in a way that makes their movements more efficient, adjusting for the limitations of the size of their legs and their weight. Humans, on the other hand, have not developed such a mechanism to adjust for such dramatic side-to-side motion. So, if we simply waddle, chances are we’ll fall, but some aspects of a penguin’s wobble could be very beneficial.

"We can envision a scenario where elderly may be able to put their walkers or canes down because they’ve learned to make the same adjustments in their walking patterns," Kurz said. "This research may aid in developing a way to teach those people how to walk more efficiently despite their side-to-side motion, to learn the same kind of stability as the penguin."

Another application for this research involves the construction of sophisticated robots. Kurz said it is very expensive to construct a robot that can successfully adjust to side to side, or medial-lateral, motion. Robots currently in use, such as the Asimo robot that mimics human walking patterns, have large, expensive and cumbersome computers built onto their "bodies" to keep them from tipping over when they walk and run. His research can be used to build smaller computers for such robots that will become increasingly more life-like.

"There is not much research on this issue, so we’re hopeful about the results," Kurz said.

To facilitate his study, Kurz has created a special platform that contains a pressure mat. As penguins walk across the mat, it measures the variability in the width and length of their steps. The data will provide insight into the natural mechanics and stability of the penguins’ walking patterns.

Kurz is collaborating with biologists at Moody Gardens, a public, nonprofit educational destination utilizing nature in the advancement of rehabilitation, conservation, recreation and research.

"This study provides a unique opportunity to have direct access to an aspect of the natural world that would otherwise be inaccessible," Greg Whittaker, Moody Gardens animal husbandry manager, said. "This research also may have real applications in addressing skeletal deformities that occasionally occur in captive penguins. By establishing the normal mechanics of penguin walking, we can better understand how to recognize and deal with abnormalities."

King penguins were chosen because of their hefty size. Smaller birds, such as the rock hopper penguins, were too lightweight to register data on the mat. King penguins, second in size only to the larger Emperor penguins, are three feet tall on average and can tip the scales at up to 35 pounds. And they were also very eager to perform.

"It’s almost like playtime for them. We can’t hold them back," Kurz said. "There is one in particular that always wants to cut in front of the other penguins, so that he can walk across the mat first. It’s pretty cute."

Just why penguins (or pandas or kittens) seem so "cute" to humans isn’t as measurable as their gait, but some researchers speculate that this may be rooted in the animals’ perceived vulnerability, lack of threat and soft physiques.

For UH researcher Kurz, his subjects’ funny, cuddly nature is just an incidental advantage.

His current research will provide a springboard for future studies on the unique locomotive strategies of penguins. Next, he will examine the running patterns of the penguins. And if you think penguins are cute waddling, just wait till you see them in a hurry.

As comical as his subjects may be, Kurz remains a scientist first and an amused spectator second.

"You can’t help smiling," Kurz said, "but this is serious research, and the results could make a real difference in many people’s lives."

Marisa Ramirez | EurekAlert!
Further information:
http://www.hhp.uh.edu
http://www.uh.edu/admin/media/nr/2005/12dec/121205penguinvideo.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>