Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Proteins To Fight Cancer

13.01.2006


An approach to treating intestine cancer is being developed by Russian researchers from the Bioengineering Centre, Russian Academy of Sciences, under Anna Prokhorchuk’s guidance jointly with American colleagues sponsored by the international CRDF foundation and the Federal Agency for Science and Innovation (Rosnauka).



Any cancerous disease changes the genetic landscape – some genes are suppressed, others get activated, which results in tumour growth, the formation of metastases, and cancer spreads beyond immune system control. The universal mechanism which regulates genes’ activity is DNA methylation, where a methyl group is joined to a certain section of a molecule. Special methyl-DNA binding proteins come into action, bound with a section of the methylated DNA and this suppresses gene activity. The researchers are interested in one of such proteins named Kaiso. They assume that this protein plays an important role in the intestine cancer development, and it can be used for diagnostics and treatment.

First, the researchers measured the level of expression of the Kaiso protein gene in intestinal tumours in mice and in human patients. The level of expression turned out to be dozens of times higher than that in healthy organs and tissues. ‘Kaiso-zero’ mice were then used which were found to be resistant to cancer. The same resistance to cancer was acquired by mice whose DNA methylation had been suppressed by other methods.


As the Kaiso protein content in the majority of human tumours is much higher than that in healthy tissues, it can be potentially used for early detection of cancer. Contemporary molecular methods allow to analyze expression of dozens of genes in the cancerous growth tissues and to compare the obtained picture with the “gene portrait” of normal cells. Certainly, the Kaiso gene is not the only one that can be used for such diagnosticums. The tumour represents a very heterogeneous and rather dynamic system, which requires knowledge of almost the entire “genetic portrait” of 28,000 genes.

It is thought that there are other between 10 and 30 key genes which can also serve as markers of tumour characteristics. This will save resources and time, relieving the necessity of analyzing the entire multithousand genome.

In cancer therapy, chimeric Kaiso protein could be created. The ordinary Kaiso protein (via DNA methylated binding) inhibits the work of cancer suppressor genes. However, it is possible, using the same properties of the protein, to make it not suppress, but reinforce the work of these genes. This is what the researchers are striving to achieve. “Although, there are hidden pitfalls here,” explains Anna Prokhorchuk, project manager. “It is necessary to make chimeric Kaiso work only to activate cancer suppressor genes, not the other methylated DNA sequences. This is what we are working at in the Bioengineering Centre jointly with American colleagues.” The ultimate aim of the investigation is to scrutinize the possibility for using Kaiso protein as a target for directional anticancer therapy.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>