Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Proteins To Fight Cancer

13.01.2006


An approach to treating intestine cancer is being developed by Russian researchers from the Bioengineering Centre, Russian Academy of Sciences, under Anna Prokhorchuk’s guidance jointly with American colleagues sponsored by the international CRDF foundation and the Federal Agency for Science and Innovation (Rosnauka).



Any cancerous disease changes the genetic landscape – some genes are suppressed, others get activated, which results in tumour growth, the formation of metastases, and cancer spreads beyond immune system control. The universal mechanism which regulates genes’ activity is DNA methylation, where a methyl group is joined to a certain section of a molecule. Special methyl-DNA binding proteins come into action, bound with a section of the methylated DNA and this suppresses gene activity. The researchers are interested in one of such proteins named Kaiso. They assume that this protein plays an important role in the intestine cancer development, and it can be used for diagnostics and treatment.

First, the researchers measured the level of expression of the Kaiso protein gene in intestinal tumours in mice and in human patients. The level of expression turned out to be dozens of times higher than that in healthy organs and tissues. ‘Kaiso-zero’ mice were then used which were found to be resistant to cancer. The same resistance to cancer was acquired by mice whose DNA methylation had been suppressed by other methods.


As the Kaiso protein content in the majority of human tumours is much higher than that in healthy tissues, it can be potentially used for early detection of cancer. Contemporary molecular methods allow to analyze expression of dozens of genes in the cancerous growth tissues and to compare the obtained picture with the “gene portrait” of normal cells. Certainly, the Kaiso gene is not the only one that can be used for such diagnosticums. The tumour represents a very heterogeneous and rather dynamic system, which requires knowledge of almost the entire “genetic portrait” of 28,000 genes.

It is thought that there are other between 10 and 30 key genes which can also serve as markers of tumour characteristics. This will save resources and time, relieving the necessity of analyzing the entire multithousand genome.

In cancer therapy, chimeric Kaiso protein could be created. The ordinary Kaiso protein (via DNA methylated binding) inhibits the work of cancer suppressor genes. However, it is possible, using the same properties of the protein, to make it not suppress, but reinforce the work of these genes. This is what the researchers are striving to achieve. “Although, there are hidden pitfalls here,” explains Anna Prokhorchuk, project manager. “It is necessary to make chimeric Kaiso work only to activate cancer suppressor genes, not the other methylated DNA sequences. This is what we are working at in the Bioengineering Centre jointly with American colleagues.” The ultimate aim of the investigation is to scrutinize the possibility for using Kaiso protein as a target for directional anticancer therapy.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>