Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Synthesis Of Chimeric Proteins

13.01.2006


Not long ago, the biochemist’s main tool was a chromatograph or an electrophoresis plant, but now specialists in bio-informatics use special software to simulate biochemical processes and the behaviour of complex molecules.



This approach was used to research factitious proteins of the cytochrome P450 family by researchers from the V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, guided by A.V. Lisitsa, Ph.D. (Biology), and their colleagues from Vanderbilt University (USA) guided by Doctor Larisa Podust. The project has been sponsored by Rosnauka and the CRDF foundation.

Proteins of this family play an important role in the organism: they are responsible for oxidation of xenobiotics – alien chemical compounds harmful to cells. Oxidation assists in removing xenobiotics from the organism, providing for cells’ purification from chemical skimming. The primary importance of cytochromes P450 resulted in the fact that these proteins are found practically in all existing organisms – in bacteria, plants, fungi and animals. Preserving general function universality, cytochromes P450 show great diversity in their structural organization.


The main aim is to consider various structural elements of real existing proteins as a peculiar meccano, out of which factitious chimeric proteins can be assembled to combine components of several different structures. It is assumed that chimeric proteins will be able to perform a pre-programmed biological function. Why is that needed? – The answer is simple: factitious cytochrome P450-based proteins may be used by biotechnologists for complicated chemical synthesis leading to creation of drug prototypes, agricultural chemistry preparations and many others.

The main question facing the researchers is as follows – what are the rules to “play” the meccano consisting of protein elements? “About three years ago, we set up a hypothesis that the leading role of cytochromes P450 in the structural organization and in their interaction with chemical substances is played by motives, i.e., a certain spatial configuration of individual protein fragments, typical folds and spirals of this long molecule,” says A.V. Lisitsa. “It is them that we are going to identify at the first stage of the work. Then, with the help of a PC, we shall replace some motives by others, and a three-dimensional structures calculation will allow to select such chimeric proteins, which will take the necessary spatial configuration and will be responsible for definite functions, but will not remain a senseless chain of molecules after the synthesis. And then, the neurocomputer will begin its work.”

The ’neurocomputer’ is used in bio-informatics to denote the simplified representation of the brain in the form of a virtual neurons network. Such a network is capable of accumulating information and learning. The network (by the example of experimentally known reactions of the entire spectrum of substances with cytochromes P450) learns to recognise correct interaction types. Then the network will evaluate with what substances the factitious protein built from elements of natural structures will interact. The work will be considered successful if the researchers succeed to prove that the developed method allows to forecast correctly the artificial proteins’ functions.

“Contemporary genetic engineering methods allow to produce rather easily a transgene (recombinant) organism that will synthesize computer-designed chimeric proteins,” says A.V. Lisitsa. “The preparations required for that will be produced and delivered to us by the US colleagues, and we shall clone microorganisms in Russia, purify the protein produced by it and check their activity with the help of the US reagents. If everything goes on successfully, factitious protein preparations will be sent to Vanderbilt University, where they will be crystallized, and then the structure for assessment of computor simulators accuracy will be investigated. One of Russian students will be involved in these experiments, he/she will go to the USA to acquire protein crystallography skills. The statistical model developed in the course of the research may be used for rational construction of other proteins with new or improved properties.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>