Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection-fighting protein could be key to autoimmune disease

12.01.2006


Scientists at the University of Michigan Medical School have discovered that a protein called cryopyrin responds to invading bacteria by triggering the activation of a powerful inflammatory molecule called IL-1beta, which signals the immune system to attack pathogens and induces fever to protect the body against infection.



The discovery could help scientists understand what causes autoimmune diseases like rheumatoid arthritis where the immune system attacks and destroys tissue in the patient’s body.

"IL-1beta is a master regulator of infection, and it’s known to be involved in the development of rheumatoid arthritis," says Gabriel Nunez, M.D., a professor of pathology in the U-M Medical School, who directed the research study. "So it’s likely that these findings will apply to other autoimmune diseases, as well."


In a study being published Jan. 11 as an Advance Online Publication in Nature, U-M scientists show, for the first time, that cryopyrin is activated by bacterial RNA and that it is essential to the cell’s ability to mount an effective defense against bacteria.

Found in the cytosol, or fluid inside cells, cryopyrin is a member of the NOD-LRR family of proteins, which protect cells against microbial infection. Defective cryopyrin is predicted to be associated with increased susceptibility to infection.

Small mutations in CIAS1 – the human gene for cryopyrin – are known to cause three rare autoinflammatory diseases: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease. People with these diseases produce uncontrolled amounts of IL-1beta and other inflammatory molecules. This causes them to have recurrent episodes of fever and to develop rashes – often when they are exposed to cold temperatures.

Based on previous research with cell lines, scientists suspected that cryopyrin was an important link between the immune system’s normal job of killing bacteria and the abnormal development of autoimmune diseases. But no one was sure exactly how cryopyrin was "turned on" in living animals or how it stimulated the immune response.

In previous research, the U-M team found that the single-point mutation in CIAS1 – which causes autoinflammatory syndromes in people – activates cryopyrin, even when there is no bacterial RNA present in the cell. "The mutation fools the cell into producing the activated form of cryopyrin, even when bacteria aren’t there," Nunez says.

To decipher cryopyrin’s signal, Thirumala-Devi Kanneganti, Ph.D., a U-M post-doctoral research fellow in pathology, studied immune cells called macrophages and several strains of laboratory mice. One of these strains was unable to produce cryopyrin, because the CIAS1 gene had been removed.

Kanneganti exposed the macrophages and mice to bacterial RNA and to small synthetic molecules called R837 (Imiquimod) and R848 (Resiquimod). These adjuvant molecules activate the pro-inflammatory response in mice and are used as anti-tumor agents and to treat genital warts caused by a virus in human patients.

"We found that cryopyrin was activated and the macrophages began secreting IL-1beta following stimulation with R837 or R848," Kanneganti says. "Since the structure of these molecules is very similar to DNA or RNA, we believe the natural ligand, or activating molecule, for cryopyrin could be DNA or RNA."

In previous research, other scientists discovered a signaling pathway in which molecules called toll-like receptors on the cell’s surface recognize invading bacteria and activate the immune response. But U-M scientists found that cryopyrin uses a different signaling pathway. Activated cryopyrin triggers an enzyme called caspase-1, which splits the immature form of IL-1beta to produce the active form of the molecule. Once IL-1beta is activated, it can be secreted out of the cell where it binds to the IL-1beta receptor on other cells to trigger an immune response.

"These two signaling pathways cooperate," Nunez explains. "The toll-like receptor pathway recognizes bacteria outside the cell, while cryopyrin recognizes bacteria that’s already in the cell. When a toll receptor on the membrane senses bacterial RNA, it activates a signaling pathway called NF-kappaB, which induces the production of IL-1beta. Cryopyrin does the same thing, but it works through caspase-1 to produce the active form of IL-1beta."

In her experiments, Kanneganti confirmed that the signaling pathway requires the presence of cryopyrin. Macrophages and mice that lacked the CIAS1 gene for cryopyrin were unable to generate an immune response when exposed to bacterial products.

The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID). The University of Michigan has filed a patent application on this research technology.

Additional U-M collaborators on the study included Nesrin Ozoren, Mathilde Body-Malapel, Amal Amer, Jong-Hwan Park, Luigi Franchi and Joel Whitfield. Other collaborators were Winfried Barchet and Marco Colonna from the Washington University School of Medicine, Peter Vandenabeele from Belgium’s Ghent University, John Bertin, Anthony Coyle and Ethan P. Grant from Millennium Pharmaceuticals and Shizuo Akira from Japan’s Osaka University.

Citation: Nature DOI: 10.1038/nature04517

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>