Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infection-fighting protein could be key to autoimmune disease


Scientists at the University of Michigan Medical School have discovered that a protein called cryopyrin responds to invading bacteria by triggering the activation of a powerful inflammatory molecule called IL-1beta, which signals the immune system to attack pathogens and induces fever to protect the body against infection.

The discovery could help scientists understand what causes autoimmune diseases like rheumatoid arthritis where the immune system attacks and destroys tissue in the patient’s body.

"IL-1beta is a master regulator of infection, and it’s known to be involved in the development of rheumatoid arthritis," says Gabriel Nunez, M.D., a professor of pathology in the U-M Medical School, who directed the research study. "So it’s likely that these findings will apply to other autoimmune diseases, as well."

In a study being published Jan. 11 as an Advance Online Publication in Nature, U-M scientists show, for the first time, that cryopyrin is activated by bacterial RNA and that it is essential to the cell’s ability to mount an effective defense against bacteria.

Found in the cytosol, or fluid inside cells, cryopyrin is a member of the NOD-LRR family of proteins, which protect cells against microbial infection. Defective cryopyrin is predicted to be associated with increased susceptibility to infection.

Small mutations in CIAS1 – the human gene for cryopyrin – are known to cause three rare autoinflammatory diseases: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease. People with these diseases produce uncontrolled amounts of IL-1beta and other inflammatory molecules. This causes them to have recurrent episodes of fever and to develop rashes – often when they are exposed to cold temperatures.

Based on previous research with cell lines, scientists suspected that cryopyrin was an important link between the immune system’s normal job of killing bacteria and the abnormal development of autoimmune diseases. But no one was sure exactly how cryopyrin was "turned on" in living animals or how it stimulated the immune response.

In previous research, the U-M team found that the single-point mutation in CIAS1 – which causes autoinflammatory syndromes in people – activates cryopyrin, even when there is no bacterial RNA present in the cell. "The mutation fools the cell into producing the activated form of cryopyrin, even when bacteria aren’t there," Nunez says.

To decipher cryopyrin’s signal, Thirumala-Devi Kanneganti, Ph.D., a U-M post-doctoral research fellow in pathology, studied immune cells called macrophages and several strains of laboratory mice. One of these strains was unable to produce cryopyrin, because the CIAS1 gene had been removed.

Kanneganti exposed the macrophages and mice to bacterial RNA and to small synthetic molecules called R837 (Imiquimod) and R848 (Resiquimod). These adjuvant molecules activate the pro-inflammatory response in mice and are used as anti-tumor agents and to treat genital warts caused by a virus in human patients.

"We found that cryopyrin was activated and the macrophages began secreting IL-1beta following stimulation with R837 or R848," Kanneganti says. "Since the structure of these molecules is very similar to DNA or RNA, we believe the natural ligand, or activating molecule, for cryopyrin could be DNA or RNA."

In previous research, other scientists discovered a signaling pathway in which molecules called toll-like receptors on the cell’s surface recognize invading bacteria and activate the immune response. But U-M scientists found that cryopyrin uses a different signaling pathway. Activated cryopyrin triggers an enzyme called caspase-1, which splits the immature form of IL-1beta to produce the active form of the molecule. Once IL-1beta is activated, it can be secreted out of the cell where it binds to the IL-1beta receptor on other cells to trigger an immune response.

"These two signaling pathways cooperate," Nunez explains. "The toll-like receptor pathway recognizes bacteria outside the cell, while cryopyrin recognizes bacteria that’s already in the cell. When a toll receptor on the membrane senses bacterial RNA, it activates a signaling pathway called NF-kappaB, which induces the production of IL-1beta. Cryopyrin does the same thing, but it works through caspase-1 to produce the active form of IL-1beta."

In her experiments, Kanneganti confirmed that the signaling pathway requires the presence of cryopyrin. Macrophages and mice that lacked the CIAS1 gene for cryopyrin were unable to generate an immune response when exposed to bacterial products.

The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID). The University of Michigan has filed a patent application on this research technology.

Additional U-M collaborators on the study included Nesrin Ozoren, Mathilde Body-Malapel, Amal Amer, Jong-Hwan Park, Luigi Franchi and Joel Whitfield. Other collaborators were Winfried Barchet and Marco Colonna from the Washington University School of Medicine, Peter Vandenabeele from Belgium’s Ghent University, John Bertin, Anthony Coyle and Ethan P. Grant from Millennium Pharmaceuticals and Shizuo Akira from Japan’s Osaka University.

Citation: Nature DOI: 10.1038/nature04517

Sally Pobojewski | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>