Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford/Packard scientist’s data-mining technique strikes genetic gold

12.01.2006


A new method to mine existing scientific data may provide a wealth of information about the interactions among genes, the environment and biological processes, say researchers at the Stanford University School of Medicine, Lucile Packard Children’s Hospital and Harvard Medical School. Like panning for gold, they used the powerful technique to sift through millions of bits of unrelated information - in this case, gene expression data from so-called microarray experiments - to pinpoint genes likely to be involved in leukemia, aging, injury and muscle development.



"This is just the tip of the iceberg," said bioinformatics specialist Atul Butte, MD, PhD, who is also a pediatrician at Lucile Packard Children’s Hospital at Stanford. "Nearly 100 different diseases have been studied using microarrays, spanning all of medicine. This is a new way to explore this type of data. We can study virtually everything that’s been studied." Butte is the first author of the study, which is published in the Jan. 6 online issue of Nature Biotechnology.

The advance comes with a caveat, however: clinically useful nuggets will be buried under the avalanche of data inundating international repositories each year unless scientists come up with a way to better classify their experiments and results.


"Libraries figured out a long time ago how to classify items using the Dewey decimal and other systems," said Butte, who estimates that the contents of the databases are more than doubling each year. "We need to write software now that will help scientists assign the proper concepts to each experiment."

Microarray experiments allow researchers to compare the expression patterns of tens of thousands of individual genes over time in diseased and healthy cells, or in many other experimental conditions. Each experiment generates thousands of pieces of data about the cell’s genes. Although biologists use the technology routinely, focusing only on the few results pertinent to their particular research topic, most scientific journals require that their authors submit all of their data to international databases for use by other researchers.

Butte and his Harvard co-author, Isaac Kohane, MD, PhD, used computer programs to automatically categorize the tens of thousands of microarray experiments in a single database based on the terms, or concepts, used by the submitter to describe the experiment. They then looked for findings shared by several experiments with similar concepts, such as tissue type, for example. Comparing results from many similar experiments allowed them to identify correlations that may not be statistically significant in just one experiment.

Butte and Kohane identified several previously unknown correlations: nine genes whose expression increased or decreased significantly with aging, two genes that are highly expressed in response to injury, and another gene in which the expression drops significantly in leukemic cells. They also confirmed these relationships by studying genes known to be associated with muscle tissue in both humans and mice.

Their classification system was stymied, however, when scientists included too much or too little information in the text annotations, or used imprecise words such as "pool," which can mean either a body of water or the action of combining the contents of two or more tubes.

"As a community, we’ve standardized the way the data itself is represented," said Butte, "but there are no formal requirements for the accompanying textual descriptions of this data. Sometimes people seem to almost copy and paste their entire scientific paper into the text box. We need to clean up our annotations because now we’re showing that they have value."

Butte and Kohane favor using the existing Unified Medical Language System, which consists of more than 1 million biomedical concepts, to vastly simplify the computerized sorting of the thousands of microarray experiments submitted to databases each year. Without such a system, valuable information will simply be lost as the results pile up. The National Institutes of Health recently funded the National Center for Biomedical Ontology, a consortium led by Stanford professor Mark Musen, MD, PhD, to develop ontologies to allow scientists to describe their data in standardized ways.

"All the answers are already there," said Butte. "We’ve reached a critical mass with this data. But unless we’re careful, we’re going to end up with a big mess."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu
http://www.lpch.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>