Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford/Packard scientist’s data-mining technique strikes genetic gold

12.01.2006


A new method to mine existing scientific data may provide a wealth of information about the interactions among genes, the environment and biological processes, say researchers at the Stanford University School of Medicine, Lucile Packard Children’s Hospital and Harvard Medical School. Like panning for gold, they used the powerful technique to sift through millions of bits of unrelated information - in this case, gene expression data from so-called microarray experiments - to pinpoint genes likely to be involved in leukemia, aging, injury and muscle development.



"This is just the tip of the iceberg," said bioinformatics specialist Atul Butte, MD, PhD, who is also a pediatrician at Lucile Packard Children’s Hospital at Stanford. "Nearly 100 different diseases have been studied using microarrays, spanning all of medicine. This is a new way to explore this type of data. We can study virtually everything that’s been studied." Butte is the first author of the study, which is published in the Jan. 6 online issue of Nature Biotechnology.

The advance comes with a caveat, however: clinically useful nuggets will be buried under the avalanche of data inundating international repositories each year unless scientists come up with a way to better classify their experiments and results.


"Libraries figured out a long time ago how to classify items using the Dewey decimal and other systems," said Butte, who estimates that the contents of the databases are more than doubling each year. "We need to write software now that will help scientists assign the proper concepts to each experiment."

Microarray experiments allow researchers to compare the expression patterns of tens of thousands of individual genes over time in diseased and healthy cells, or in many other experimental conditions. Each experiment generates thousands of pieces of data about the cell’s genes. Although biologists use the technology routinely, focusing only on the few results pertinent to their particular research topic, most scientific journals require that their authors submit all of their data to international databases for use by other researchers.

Butte and his Harvard co-author, Isaac Kohane, MD, PhD, used computer programs to automatically categorize the tens of thousands of microarray experiments in a single database based on the terms, or concepts, used by the submitter to describe the experiment. They then looked for findings shared by several experiments with similar concepts, such as tissue type, for example. Comparing results from many similar experiments allowed them to identify correlations that may not be statistically significant in just one experiment.

Butte and Kohane identified several previously unknown correlations: nine genes whose expression increased or decreased significantly with aging, two genes that are highly expressed in response to injury, and another gene in which the expression drops significantly in leukemic cells. They also confirmed these relationships by studying genes known to be associated with muscle tissue in both humans and mice.

Their classification system was stymied, however, when scientists included too much or too little information in the text annotations, or used imprecise words such as "pool," which can mean either a body of water or the action of combining the contents of two or more tubes.

"As a community, we’ve standardized the way the data itself is represented," said Butte, "but there are no formal requirements for the accompanying textual descriptions of this data. Sometimes people seem to almost copy and paste their entire scientific paper into the text box. We need to clean up our annotations because now we’re showing that they have value."

Butte and Kohane favor using the existing Unified Medical Language System, which consists of more than 1 million biomedical concepts, to vastly simplify the computerized sorting of the thousands of microarray experiments submitted to databases each year. Without such a system, valuable information will simply be lost as the results pile up. The National Institutes of Health recently funded the National Center for Biomedical Ontology, a consortium led by Stanford professor Mark Musen, MD, PhD, to develop ontologies to allow scientists to describe their data in standardized ways.

"All the answers are already there," said Butte. "We’ve reached a critical mass with this data. But unless we’re careful, we’re going to end up with a big mess."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu
http://www.lpch.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>