Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Vanderbilt-Ingram Cancer Center uncover clue to explain invasive brain tumors

12.01.2006


Researchers at the Vanderbilt-Ingram Cancer Center have uncovered a clue to explain the invasive nature of an aggressive kind of brain tumor called glioblastoma multiforme, or gliomas, and their findings are published in this week’s online edition of the journal Oncogene.



Reid Thompson, M.D., director of Neurosurgical Oncology, and his colleague, Moneeb Ehtesham, M.D., assistant professor of Neurological Surgery and Cancer Biology, found a key receptor plays a role in the spread of this tumor.

"We looked at CXCR4, a molecule which has been shown to play a role in other cancers, and found that the more metastatic aggression relates to this molecule. So, we looked at whether this molecule governed this invasion in gliomas," said Ehtesham.


CXCR4 is a receptor that is found in white blood cells and has been shown to play a key role in regulating the movement of cells in the immune system. Finding something to inhibit CXCR4 could potentially lead to treatment options to prevent cancerous cells from moving to other organs.

In animal models, Thompson and Ehtesham found CXCR4 can, in fact, be linked to cell invasion in glioblastoma. "If we look at a brain cancer model in rodents we can see a difference in CXCR4 expression in invasive and non-invasive cells. We found CXCR4 was expressed in the non-invasive cells, but was much higher in invasive cells, or cells from the core of the tumor and cells that had migrated away," said Ehtesham. Thompson said it was significantly higher, "up to thirty- to fortyfold higher in the invasive cells," he added.

Next, Thompson and Ehtesham looked at CXCR4 more closely, in dish studies. They wanted to determine whether cells that have CXCR4 invade more than cells without the molecule. They induced glioblastoma and forced the cells to migrate, comparing migrating brain tumor cells with the cells at the origin of the cancer. Their findings were consistent with the animal studies -- CXCR4 was again much higher in the migrating cancer cells than in the core of the tumor. Only this time, even higher – sixty- to eightyfold higher, according to Ehtesham.

The researchers then shut down the CXCR4 function of the receptor. What they found was puzzling. Shutting down the CXCR4 weakened its ability to migrate, but it didn’t stop it altogether, just significantly impaired it. "Cancer is finding a way to move around the brain, said Thompson. "This tells us this receptor plays an important role in mediating cell invasion of gliomas," he added.

Ehtesham said it is one of the contributors, but there are many others. The discovery could help experts target new therapies for the aggressive brain tumors. Several studies are under way to look at targeting molecules to specifically shut down CXCR4 for other cancers, but Thompson said no one has linked its expression to the invasive behavior of brain tumor cells, until now. Ehtesham said they are now looking at a neutralizing antibody that binds to CXCR4 and works by sequestering the invasive molecule, as well as small-interference RNA, which is like silencing it by shutting down the expression of the receptor.

"Now we may have a way of blocking the process that allows cancer to spread in the brain, but we will need to know more than just how to shut down these migratory cells to fight this cancer. This is just another tool in our arsenal," said Thompson.

Thompson and Ehtesham are eager to take this research into human trials soon and hope to see benefits for the 17,000-18,000 Americans facing a newly diagnosed glioma each year.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>