Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers at Vanderbilt-Ingram Cancer Center uncover clue to explain invasive brain tumors


Researchers at the Vanderbilt-Ingram Cancer Center have uncovered a clue to explain the invasive nature of an aggressive kind of brain tumor called glioblastoma multiforme, or gliomas, and their findings are published in this week’s online edition of the journal Oncogene.

Reid Thompson, M.D., director of Neurosurgical Oncology, and his colleague, Moneeb Ehtesham, M.D., assistant professor of Neurological Surgery and Cancer Biology, found a key receptor plays a role in the spread of this tumor.

"We looked at CXCR4, a molecule which has been shown to play a role in other cancers, and found that the more metastatic aggression relates to this molecule. So, we looked at whether this molecule governed this invasion in gliomas," said Ehtesham.

CXCR4 is a receptor that is found in white blood cells and has been shown to play a key role in regulating the movement of cells in the immune system. Finding something to inhibit CXCR4 could potentially lead to treatment options to prevent cancerous cells from moving to other organs.

In animal models, Thompson and Ehtesham found CXCR4 can, in fact, be linked to cell invasion in glioblastoma. "If we look at a brain cancer model in rodents we can see a difference in CXCR4 expression in invasive and non-invasive cells. We found CXCR4 was expressed in the non-invasive cells, but was much higher in invasive cells, or cells from the core of the tumor and cells that had migrated away," said Ehtesham. Thompson said it was significantly higher, "up to thirty- to fortyfold higher in the invasive cells," he added.

Next, Thompson and Ehtesham looked at CXCR4 more closely, in dish studies. They wanted to determine whether cells that have CXCR4 invade more than cells without the molecule. They induced glioblastoma and forced the cells to migrate, comparing migrating brain tumor cells with the cells at the origin of the cancer. Their findings were consistent with the animal studies -- CXCR4 was again much higher in the migrating cancer cells than in the core of the tumor. Only this time, even higher – sixty- to eightyfold higher, according to Ehtesham.

The researchers then shut down the CXCR4 function of the receptor. What they found was puzzling. Shutting down the CXCR4 weakened its ability to migrate, but it didn’t stop it altogether, just significantly impaired it. "Cancer is finding a way to move around the brain, said Thompson. "This tells us this receptor plays an important role in mediating cell invasion of gliomas," he added.

Ehtesham said it is one of the contributors, but there are many others. The discovery could help experts target new therapies for the aggressive brain tumors. Several studies are under way to look at targeting molecules to specifically shut down CXCR4 for other cancers, but Thompson said no one has linked its expression to the invasive behavior of brain tumor cells, until now. Ehtesham said they are now looking at a neutralizing antibody that binds to CXCR4 and works by sequestering the invasive molecule, as well as small-interference RNA, which is like silencing it by shutting down the expression of the receptor.

"Now we may have a way of blocking the process that allows cancer to spread in the brain, but we will need to know more than just how to shut down these migratory cells to fight this cancer. This is just another tool in our arsenal," said Thompson.

Thompson and Ehtesham are eager to take this research into human trials soon and hope to see benefits for the 17,000-18,000 Americans facing a newly diagnosed glioma each year.

Heather Hall | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>