Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Vanderbilt-Ingram Cancer Center uncover clue to explain invasive brain tumors

12.01.2006


Researchers at the Vanderbilt-Ingram Cancer Center have uncovered a clue to explain the invasive nature of an aggressive kind of brain tumor called glioblastoma multiforme, or gliomas, and their findings are published in this week’s online edition of the journal Oncogene.



Reid Thompson, M.D., director of Neurosurgical Oncology, and his colleague, Moneeb Ehtesham, M.D., assistant professor of Neurological Surgery and Cancer Biology, found a key receptor plays a role in the spread of this tumor.

"We looked at CXCR4, a molecule which has been shown to play a role in other cancers, and found that the more metastatic aggression relates to this molecule. So, we looked at whether this molecule governed this invasion in gliomas," said Ehtesham.


CXCR4 is a receptor that is found in white blood cells and has been shown to play a key role in regulating the movement of cells in the immune system. Finding something to inhibit CXCR4 could potentially lead to treatment options to prevent cancerous cells from moving to other organs.

In animal models, Thompson and Ehtesham found CXCR4 can, in fact, be linked to cell invasion in glioblastoma. "If we look at a brain cancer model in rodents we can see a difference in CXCR4 expression in invasive and non-invasive cells. We found CXCR4 was expressed in the non-invasive cells, but was much higher in invasive cells, or cells from the core of the tumor and cells that had migrated away," said Ehtesham. Thompson said it was significantly higher, "up to thirty- to fortyfold higher in the invasive cells," he added.

Next, Thompson and Ehtesham looked at CXCR4 more closely, in dish studies. They wanted to determine whether cells that have CXCR4 invade more than cells without the molecule. They induced glioblastoma and forced the cells to migrate, comparing migrating brain tumor cells with the cells at the origin of the cancer. Their findings were consistent with the animal studies -- CXCR4 was again much higher in the migrating cancer cells than in the core of the tumor. Only this time, even higher – sixty- to eightyfold higher, according to Ehtesham.

The researchers then shut down the CXCR4 function of the receptor. What they found was puzzling. Shutting down the CXCR4 weakened its ability to migrate, but it didn’t stop it altogether, just significantly impaired it. "Cancer is finding a way to move around the brain, said Thompson. "This tells us this receptor plays an important role in mediating cell invasion of gliomas," he added.

Ehtesham said it is one of the contributors, but there are many others. The discovery could help experts target new therapies for the aggressive brain tumors. Several studies are under way to look at targeting molecules to specifically shut down CXCR4 for other cancers, but Thompson said no one has linked its expression to the invasive behavior of brain tumor cells, until now. Ehtesham said they are now looking at a neutralizing antibody that binds to CXCR4 and works by sequestering the invasive molecule, as well as small-interference RNA, which is like silencing it by shutting down the expression of the receptor.

"Now we may have a way of blocking the process that allows cancer to spread in the brain, but we will need to know more than just how to shut down these migratory cells to fight this cancer. This is just another tool in our arsenal," said Thompson.

Thompson and Ehtesham are eager to take this research into human trials soon and hope to see benefits for the 17,000-18,000 Americans facing a newly diagnosed glioma each year.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>