Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Component in soy products causes reproductive problems in laboratory mice

12.01.2006


Genistein, a major component of soy, was found to disrupt the development of the ovaries in newborn female mice that were given the product. This study adds to a growing body of literature demonstrating the potentially adverse consequences of genistein on the reproductive system.


This illustration depicts normal egg cell development in mice as schown in the top: the bottom image shows the genistein-treated animals where the abnormal egg clustering occurs.



"Although we are not entirely certain about how these animal studies on genistein translate to the human population, there is some reason to be cautious," said Dr. David A. Schwartz, Director of the National Institute of Environmental Health Sciences (NIEHS). "More clinical studies are needed to determine how exposure during critical windows of development can impact human health."

Genistein is the primary naturally occurring estrogen in plants (called phytoestrogens) and can mimic the effects of estrogen in the body. Genistein can be found in foods containing soy such as soy-based infant formulas as well as over-the-counter dietary supplements.


The results of this study conducted by researchers at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, in collaboration with an investigator at Syracuse University, are published in the January issue of Biology of Reproduction.

The NIEHS researchers previously showed that mice given genistein immediately after birth had irregular menstrual cycles, problems with ovulation, and problems with fertility as they reached adulthood. The new study looks at the direct effects of genistein on the ovaries during early development.

"We knew genistein was linked to reproductive problems later in life, but we wanted to find out when the damage occurs," said Retha R. Newbold, MS, a developmental endocrinologist at NIEHS and an author on the study. "The study showed that genistein caused alterations to the ovaries during early development, which is partly responsible for the reproductive problems found in adult mice."

Female mice were injected with three different doses of genistein during their first five days of life. The genistein given to the mice was comparable to what human infants might receive in a soy-based formula, which is approximately 6-9 mg/kg per day. The researchers examined the effects on days 2 through 6.

The researchers found effects at all levels. Mice treated with the high dose (Gen 50 mg/kg) were infertile and mice treated with lower doses were subfertile, meaning they had fewer pups in each litter, and fewer pregnancies. Mice receiving the highest level of genistein, 50 mg/kg per day, had a high percentage of egg cells that remain in clusters, unable to separate and therefore develop abnormally. The researchers explain that oocytes that remain in clusters are less likely to become fertilized based on previous research. The largest difference between the genistein treated and normal mice was found at six days of age where 57 percent of the egg cells in the non-treated ovaries were single or unclustered; and only 36 percent in the genistein treated group were single

We think genistein inhibits the oocytes or egg cells from separating apart," said Wendy Jefferson, Ph.D. of NIEHS and lead researcher on the paper. "Since there are many egg cells in the same follicle instead of just one, the resources from the surrounding cells are spread too thin and they can’t get the support they need to become a mature functioning egg cell."

"You need at least one good healthy single oocyte that is ovulated and fertilized by a sperm to get a healthy baby. Genistein seems to have a way of making this task very difficult," said Newbold.

"I don’t think we can dismiss the possibility that these phytoestrogens are having an effect on the human population," said Dr. Jefferson. "They may not show their effects or be detected until later in life, but chances are they are having an effect."

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.niehs.nih.gov/home.htm

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>