Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Component in soy products causes reproductive problems in laboratory mice

12.01.2006


Genistein, a major component of soy, was found to disrupt the development of the ovaries in newborn female mice that were given the product. This study adds to a growing body of literature demonstrating the potentially adverse consequences of genistein on the reproductive system.


This illustration depicts normal egg cell development in mice as schown in the top: the bottom image shows the genistein-treated animals where the abnormal egg clustering occurs.



"Although we are not entirely certain about how these animal studies on genistein translate to the human population, there is some reason to be cautious," said Dr. David A. Schwartz, Director of the National Institute of Environmental Health Sciences (NIEHS). "More clinical studies are needed to determine how exposure during critical windows of development can impact human health."

Genistein is the primary naturally occurring estrogen in plants (called phytoestrogens) and can mimic the effects of estrogen in the body. Genistein can be found in foods containing soy such as soy-based infant formulas as well as over-the-counter dietary supplements.


The results of this study conducted by researchers at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, in collaboration with an investigator at Syracuse University, are published in the January issue of Biology of Reproduction.

The NIEHS researchers previously showed that mice given genistein immediately after birth had irregular menstrual cycles, problems with ovulation, and problems with fertility as they reached adulthood. The new study looks at the direct effects of genistein on the ovaries during early development.

"We knew genistein was linked to reproductive problems later in life, but we wanted to find out when the damage occurs," said Retha R. Newbold, MS, a developmental endocrinologist at NIEHS and an author on the study. "The study showed that genistein caused alterations to the ovaries during early development, which is partly responsible for the reproductive problems found in adult mice."

Female mice were injected with three different doses of genistein during their first five days of life. The genistein given to the mice was comparable to what human infants might receive in a soy-based formula, which is approximately 6-9 mg/kg per day. The researchers examined the effects on days 2 through 6.

The researchers found effects at all levels. Mice treated with the high dose (Gen 50 mg/kg) were infertile and mice treated with lower doses were subfertile, meaning they had fewer pups in each litter, and fewer pregnancies. Mice receiving the highest level of genistein, 50 mg/kg per day, had a high percentage of egg cells that remain in clusters, unable to separate and therefore develop abnormally. The researchers explain that oocytes that remain in clusters are less likely to become fertilized based on previous research. The largest difference between the genistein treated and normal mice was found at six days of age where 57 percent of the egg cells in the non-treated ovaries were single or unclustered; and only 36 percent in the genistein treated group were single

We think genistein inhibits the oocytes or egg cells from separating apart," said Wendy Jefferson, Ph.D. of NIEHS and lead researcher on the paper. "Since there are many egg cells in the same follicle instead of just one, the resources from the surrounding cells are spread too thin and they can’t get the support they need to become a mature functioning egg cell."

"You need at least one good healthy single oocyte that is ovulated and fertilized by a sperm to get a healthy baby. Genistein seems to have a way of making this task very difficult," said Newbold.

"I don’t think we can dismiss the possibility that these phytoestrogens are having an effect on the human population," said Dr. Jefferson. "They may not show their effects or be detected until later in life, but chances are they are having an effect."

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.niehs.nih.gov/home.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>