Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The secret life of algae


A fundamental process that has puzzled researchers for many years has been explained by UK scientists. Some simple plants that are crucial in maintaining the balance of carbon in the Earth’s atmosphere require vitamin B12 to grow properly but it has been a mystery to scientists why some types needed external sources and others did not. Now researchers at the Universities of Cambridge and Kent have discovered that half of all algae have a dependent but beneficial relationship with bacteria that make the vitamin for them.

The researchers, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), found that no algae have the necessary genes to produce vitamin B12. Those that do not require a supply are like higher plants; they have an alternative metabolic process that does not need the vitamin. However, algae that need vitamin B12 cannot make it themselves and must get it from somewhere else.

The scientists realised that the amount of vitamin B12 required to grow the types of algae that do need the vitamin in the laboratory is much higher than natural levels in the seas and rivers. They discovered that in the natural environment were bacteria that could supply the necessary vitamin B12 the algae needed. However, the relationship between the bacteria and algae was not one-way. The scientists found that the algae supported the bacteria by providing them with carbon from their own photosynthesis.

Dr Alison Smith, one of the research leaders at the University of Cambridge, said, “What these observations demonstrate is that, although algae live by harvesting the sun’s energy through photosynthesis, many of them are like animals in that they need another organism to supply them with a vital nutrient. This has implications for how we consider the ecosystems in the world’s oceans.”

Professor Julia Goodfellow, BBSRC Chief Executive, said, “Algae fix around half of the world’s carbon so it is vital that we can understand what affects their growth and wellbeing. Research into fundamental relationships and microscopic bacteria may not seem important at first but it is only by improving our understanding at this level that we can discover how to maintain the health of ecosystems at a global level.”

Matt Goode | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>