Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Region of DNA strongly associated with Alzheimer’s disease

11.01.2006


An international team of researchers, led by investigators at Washington University School of Medicine in St. Louis, are zeroing in on a gene that increases risk for Alzheimer’s disease. They have identified a region of chromosome 10 that appears to be involved in risk for the disease that currently affects an estimated 4.5 million Americans.



"There are a few genes that have been implicated in the development of early-onset Alzheimer’s disease, but other than APOE, no genes have been found that increase risk for the more common, late-onset form of the disease," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry at Washington University. "The region of DNA identified in our study showed evidence of replication in four independent series of experiments. I haven’t seen a putative risk factor show such consistent results since the e4 variant of the APOE gene was identified as a risk factor for late-onset Alzheimer’s disease more than 10 years ago."

In the January issue of the American Journal of Human Genetics, Goate’s team of researchers reports results of a scan of more than 1,400 single-nucleotide polymorphisms (SNPs) on chromosome 10 to home in on susceptibility genes for late-onset Alzheimer’s disease.


A SNP is an area of DNA where a change has occurred. A strand of DNA consists of four chemical bases, or nucleotides, represented by the letters A, C, G and T. When several regions of DNA from a population are compared, sites where variations exist may be found. Some individuals will have the original base, and others will have a variant. That site where a difference can be identified is called a single nucleotide polymorphism, or SNP.

Since most DNA does not make proteins, the majority of SNPs have no effect on DNA function or on health and disease. However, some SNP variants can cause major health problems. An example is APOE4, a common SNP in the apolipoprotein E gene that increases risk for Alzheimer’s disease.

Goate and colleagues have not yet isolated a gene on chromosome 10, but in studying the 1,400 SNPs on chromosome 10 in DNA from three series, each with approximately 400 people with late-onset Alzheimer’s disease and 400 healthy, age-matched controls, her team found only one SNP that consistently showed evidence of risk for Alzheimer’s disease in all three series.

"The region of DNA implicated in our study contains six genes," Goate says. "We don’t know which of those genes is most likely to harbor this particular risk factor for Alzheimer’s disease, but we’re getting closer. We’re now trying to nail down which one of these six genes is the most likely to be involved."

Goate expects between five and 10 genes eventually will be implicated as possible risk factors for late-onset Alzheimer’s disease, and she says it’s possible that more than one of those genes is located on chromosome 10.

"One thing we’re trying to do at a functional level is to see whether any of the six genes that we’ve identified might be involved in pathways that we already know are related to Alzheimer’s disease," she says. "For example, we know amyloid-beta peptide plays a role, so we want to see whether any of these genes might have a role in amyloid-beta metabolism.

"We don’t really know the nature of this risk factor yet. What we can say is that we believe we know where it’s located, and we know there are six genes in that region. But there also could be other regulatory elements within that strand of DNA that don’t directly produce a protein but may somehow affect proteins produced elsewhere in the genome. At this point, we can say that there is a variant in this region of DNA that is increasing risk for Alzheimer’s disease, but we can’t yet say how," Goate says.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>