Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Region of DNA strongly associated with Alzheimer’s disease


An international team of researchers, led by investigators at Washington University School of Medicine in St. Louis, are zeroing in on a gene that increases risk for Alzheimer’s disease. They have identified a region of chromosome 10 that appears to be involved in risk for the disease that currently affects an estimated 4.5 million Americans.

"There are a few genes that have been implicated in the development of early-onset Alzheimer’s disease, but other than APOE, no genes have been found that increase risk for the more common, late-onset form of the disease," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry at Washington University. "The region of DNA identified in our study showed evidence of replication in four independent series of experiments. I haven’t seen a putative risk factor show such consistent results since the e4 variant of the APOE gene was identified as a risk factor for late-onset Alzheimer’s disease more than 10 years ago."

In the January issue of the American Journal of Human Genetics, Goate’s team of researchers reports results of a scan of more than 1,400 single-nucleotide polymorphisms (SNPs) on chromosome 10 to home in on susceptibility genes for late-onset Alzheimer’s disease.

A SNP is an area of DNA where a change has occurred. A strand of DNA consists of four chemical bases, or nucleotides, represented by the letters A, C, G and T. When several regions of DNA from a population are compared, sites where variations exist may be found. Some individuals will have the original base, and others will have a variant. That site where a difference can be identified is called a single nucleotide polymorphism, or SNP.

Since most DNA does not make proteins, the majority of SNPs have no effect on DNA function or on health and disease. However, some SNP variants can cause major health problems. An example is APOE4, a common SNP in the apolipoprotein E gene that increases risk for Alzheimer’s disease.

Goate and colleagues have not yet isolated a gene on chromosome 10, but in studying the 1,400 SNPs on chromosome 10 in DNA from three series, each with approximately 400 people with late-onset Alzheimer’s disease and 400 healthy, age-matched controls, her team found only one SNP that consistently showed evidence of risk for Alzheimer’s disease in all three series.

"The region of DNA implicated in our study contains six genes," Goate says. "We don’t know which of those genes is most likely to harbor this particular risk factor for Alzheimer’s disease, but we’re getting closer. We’re now trying to nail down which one of these six genes is the most likely to be involved."

Goate expects between five and 10 genes eventually will be implicated as possible risk factors for late-onset Alzheimer’s disease, and she says it’s possible that more than one of those genes is located on chromosome 10.

"One thing we’re trying to do at a functional level is to see whether any of the six genes that we’ve identified might be involved in pathways that we already know are related to Alzheimer’s disease," she says. "For example, we know amyloid-beta peptide plays a role, so we want to see whether any of these genes might have a role in amyloid-beta metabolism.

"We don’t really know the nature of this risk factor yet. What we can say is that we believe we know where it’s located, and we know there are six genes in that region. But there also could be other regulatory elements within that strand of DNA that don’t directly produce a protein but may somehow affect proteins produced elsewhere in the genome. At this point, we can say that there is a variant in this region of DNA that is increasing risk for Alzheimer’s disease, but we can’t yet say how," Goate says.

Jim Dryden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>