Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Region of DNA strongly associated with Alzheimer’s disease

11.01.2006


An international team of researchers, led by investigators at Washington University School of Medicine in St. Louis, are zeroing in on a gene that increases risk for Alzheimer’s disease. They have identified a region of chromosome 10 that appears to be involved in risk for the disease that currently affects an estimated 4.5 million Americans.



"There are a few genes that have been implicated in the development of early-onset Alzheimer’s disease, but other than APOE, no genes have been found that increase risk for the more common, late-onset form of the disease," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry at Washington University. "The region of DNA identified in our study showed evidence of replication in four independent series of experiments. I haven’t seen a putative risk factor show such consistent results since the e4 variant of the APOE gene was identified as a risk factor for late-onset Alzheimer’s disease more than 10 years ago."

In the January issue of the American Journal of Human Genetics, Goate’s team of researchers reports results of a scan of more than 1,400 single-nucleotide polymorphisms (SNPs) on chromosome 10 to home in on susceptibility genes for late-onset Alzheimer’s disease.


A SNP is an area of DNA where a change has occurred. A strand of DNA consists of four chemical bases, or nucleotides, represented by the letters A, C, G and T. When several regions of DNA from a population are compared, sites where variations exist may be found. Some individuals will have the original base, and others will have a variant. That site where a difference can be identified is called a single nucleotide polymorphism, or SNP.

Since most DNA does not make proteins, the majority of SNPs have no effect on DNA function or on health and disease. However, some SNP variants can cause major health problems. An example is APOE4, a common SNP in the apolipoprotein E gene that increases risk for Alzheimer’s disease.

Goate and colleagues have not yet isolated a gene on chromosome 10, but in studying the 1,400 SNPs on chromosome 10 in DNA from three series, each with approximately 400 people with late-onset Alzheimer’s disease and 400 healthy, age-matched controls, her team found only one SNP that consistently showed evidence of risk for Alzheimer’s disease in all three series.

"The region of DNA implicated in our study contains six genes," Goate says. "We don’t know which of those genes is most likely to harbor this particular risk factor for Alzheimer’s disease, but we’re getting closer. We’re now trying to nail down which one of these six genes is the most likely to be involved."

Goate expects between five and 10 genes eventually will be implicated as possible risk factors for late-onset Alzheimer’s disease, and she says it’s possible that more than one of those genes is located on chromosome 10.

"One thing we’re trying to do at a functional level is to see whether any of the six genes that we’ve identified might be involved in pathways that we already know are related to Alzheimer’s disease," she says. "For example, we know amyloid-beta peptide plays a role, so we want to see whether any of these genes might have a role in amyloid-beta metabolism.

"We don’t really know the nature of this risk factor yet. What we can say is that we believe we know where it’s located, and we know there are six genes in that region. But there also could be other regulatory elements within that strand of DNA that don’t directly produce a protein but may somehow affect proteins produced elsewhere in the genome. At this point, we can say that there is a variant in this region of DNA that is increasing risk for Alzheimer’s disease, but we can’t yet say how," Goate says.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>