Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Pregnant’ protein-coding genes carry RNA ’babies’

10.01.2006


Scientists characterize large numbers of independently expressed, non-protein-coding RNA genes in the introns of protein-coding genes



Scientists from the Chinese Academy of Sciences have performed a comprehensive analysis of small, non-protein-coding RNAs in the model nematode, C. elegans. They characterize 100 heretofore-undescribed transcripts, including two novel classes; they provide insights into the genomic structure and transcriptional regulation of non-coding RNAs; and they underscore the importance of non-coding RNAs in nematode development. Their work appears this month in the journal Genome Research.

"The significance of non-protein-coding RNAs as central components of various cellular processes has risen sharply over the recent years," explains Prof. Runsheng Chen, principal investigator on the study. Excluding microRNAs (miRNAs), or small transcripts that have recently received widespread attention and are known to play important roles in transcriptional regulation, small non-coding RNAs (or ncRNAs) in C. elegans have not been extensively investigated – until now.


Using a new, high-throughput procedure to clone small, full-length ncRNAs, Chen’s laboratory isolated and characterized 161 unique transcripts. A major advantage of the new cloning procedure is that it achieves an extraordinarily high detection rate for ncRNAs by current standards. "Studies published over recent years have only been able to reach a detection rate of about 3%, but our method reached a detection rate of 30% – a 10-fold increase in cloning efficiency," explains Chen. "It’s like going from a Model T Ford to a Ferrari in one fell swoop!"

Of the 161 transcripts detected by Chen’s group, 100 were novel and 61 were previously known or predicted. Among the 100 novel genes, 30 had no known function, whereas 70 belonged to the ubiquitous class of small nucleolar RNAs (snoRNAs). Based on sequence and structural features, Chen and his colleagues were able to classify more than half of the 30 unknown RNAs into two new categories: stem-bulge RNAs (sbRNAs) and small nuclear-like RNAs (snlRNAs). Both classes of transcripts exhibited enhanced expression during the later stages of worm development, indicating a functional role for these transcripts in developmental processes.

"The interesting thing about nematodes is that their genomic organization of both snoRNAs and other ncRNAs is quite different from other animals," says Chen. In contrast to the genomes of other metazoans, where most snoRNAs are found in introns and are under the control of independent promoters, nematode snoRNA loci are both intergenic and intronic (with and without promoters). Interestingly, plant snoRNAs are primarily located in intergenic regions. Other ncRNA genes (i.e., non-snoRNA genes) are mainly located in intergenic regions in both plants and animals. But in nematodes, Chen’s team found that many of these other ncRNA genes are located in the introns of host protein-coding genes and are under the control of independent promoter elements.

Finally, Chen and his colleagues estimated that 2700 ncRNA genes are present in the C. elegans genome. "One particularly intriguing aspect of the non-coding transcriptome is its potential to fill the regulatory gap created by the surprisingly low number of protein-coding genes in higher organisms," says Chen. "Between one-celled yeast, thousand-celled nematodes, and trillion-celled mammals, there is a difference of a mere 6,000 to 19,000 to 25,000 in protein-coding gene numbers. We think that regulation by non-coding RNA accounts for this discrepancy and helps to explain the additional biological complexity of higher organisms."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>