Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Pregnant’ protein-coding genes carry RNA ’babies’

10.01.2006


Scientists characterize large numbers of independently expressed, non-protein-coding RNA genes in the introns of protein-coding genes



Scientists from the Chinese Academy of Sciences have performed a comprehensive analysis of small, non-protein-coding RNAs in the model nematode, C. elegans. They characterize 100 heretofore-undescribed transcripts, including two novel classes; they provide insights into the genomic structure and transcriptional regulation of non-coding RNAs; and they underscore the importance of non-coding RNAs in nematode development. Their work appears this month in the journal Genome Research.

"The significance of non-protein-coding RNAs as central components of various cellular processes has risen sharply over the recent years," explains Prof. Runsheng Chen, principal investigator on the study. Excluding microRNAs (miRNAs), or small transcripts that have recently received widespread attention and are known to play important roles in transcriptional regulation, small non-coding RNAs (or ncRNAs) in C. elegans have not been extensively investigated – until now.


Using a new, high-throughput procedure to clone small, full-length ncRNAs, Chen’s laboratory isolated and characterized 161 unique transcripts. A major advantage of the new cloning procedure is that it achieves an extraordinarily high detection rate for ncRNAs by current standards. "Studies published over recent years have only been able to reach a detection rate of about 3%, but our method reached a detection rate of 30% – a 10-fold increase in cloning efficiency," explains Chen. "It’s like going from a Model T Ford to a Ferrari in one fell swoop!"

Of the 161 transcripts detected by Chen’s group, 100 were novel and 61 were previously known or predicted. Among the 100 novel genes, 30 had no known function, whereas 70 belonged to the ubiquitous class of small nucleolar RNAs (snoRNAs). Based on sequence and structural features, Chen and his colleagues were able to classify more than half of the 30 unknown RNAs into two new categories: stem-bulge RNAs (sbRNAs) and small nuclear-like RNAs (snlRNAs). Both classes of transcripts exhibited enhanced expression during the later stages of worm development, indicating a functional role for these transcripts in developmental processes.

"The interesting thing about nematodes is that their genomic organization of both snoRNAs and other ncRNAs is quite different from other animals," says Chen. In contrast to the genomes of other metazoans, where most snoRNAs are found in introns and are under the control of independent promoters, nematode snoRNA loci are both intergenic and intronic (with and without promoters). Interestingly, plant snoRNAs are primarily located in intergenic regions. Other ncRNA genes (i.e., non-snoRNA genes) are mainly located in intergenic regions in both plants and animals. But in nematodes, Chen’s team found that many of these other ncRNA genes are located in the introns of host protein-coding genes and are under the control of independent promoter elements.

Finally, Chen and his colleagues estimated that 2700 ncRNA genes are present in the C. elegans genome. "One particularly intriguing aspect of the non-coding transcriptome is its potential to fill the regulatory gap created by the surprisingly low number of protein-coding genes in higher organisms," says Chen. "Between one-celled yeast, thousand-celled nematodes, and trillion-celled mammals, there is a difference of a mere 6,000 to 19,000 to 25,000 in protein-coding gene numbers. We think that regulation by non-coding RNA accounts for this discrepancy and helps to explain the additional biological complexity of higher organisms."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>