Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A European Centre for Structural Biology inaugurated in Grenoble

10.01.2006


On 13 January the new Carl-Ivar Brändén Building (CIBB) will be inaugurated on the Polygone Scientifique Campus in Grenoble, France. The CIBB will be operated as a collaboration between major international and national partners based in Grenoble and is a further step in the development of the region as a European centre of excellence for structural biology.


The new Carl Ivar Braendén building.



The CIBB comprises two complementary units: the Partnership for Structural Biology (PSB), whose members include the European Molecular Biology Laboratory (EMBL), the European Synchrotron Radiation Facility (ESRF), the Institut de Biologie Structurale (IBS) and the Institut Laue-Langevin (ILL), and the Institut de Virologie Moléculaire et Structurale (IVMS, associated with the Université Joseph Fourier and the CNRS).

“These partners offer an amazing range of expertise in the life sciences, and the Grenoble campus is an ideal place to cluster them together in an important new centre for structural biology”, says Eva Pebay-Peyroula, Director of the IBS and current Chair of the PSB. “It benefits from the presence of some of the world’s most important instruments for structural biology: the ESRF’s X-ray source is one of the most powerful in the world, and the ILL offers the world’s leading source of neutrons.”


For many years the ESRF, ILL and EMBL have collaborated in offering scientists services and training connected to these instruments, already making the site a pivotal contact point for large European research projects and interdisciplinary collaborations.

The CIBB will house research groups and a complete pipeline for carrying out high-throughput structural investigations of proteins and other molecules, with a particular focus on molecules related to human diseases. The facilities include laboratories for high-throughput protein purification and expression, robotic crystallisation facilities, deuteration and isotope labelling, nuclear magnetic resonance, mass-spectrometry and cryo-electron microscopy.

“By assembling all the components of this pipeline in a unique platform under one roof, we can greatly speed up the process of investigating molecules and processes relevant to diseases,” says Rob Ruigrok, Professor at the Université Joseph Fourier and Director of the IVMS.

One example of work to be carried out at the CIBB will be the molecular and cellular basis of viral diseases. Researchers plan to investigate, for example, proteins on the surfaces of viruses which allow them to dock onto receptor proteins, and then gain entry into human cells. Once inside, the virus hijacks crucial cellular processes and eventually destroys the host, following a range of molecular interactions.

Investigating the key steps in these processes should allow the identification of specific molecular reactions that may be potential drug targets. Designing efficient inhibitors will require three-dimensional structures – atom-by-atom maps of proteins and other molecules. The necessary level of resolution cannot be obtained with microscopes, so scientists turn to high-intensity X-ray beams, like those produced by the ESRF, and neutrons from the ILL. The many types of skills and expertise necessary for such analyses of molecular structures have now been brought together in the CIBB.

This strategy of combining complementary expertise already has proven itself in past collaborative projects between the institutes. For example, since the PSB was founded in 2002, scientists have obtained crucial insights into fundamental biological processes that play a role in disease, and as part of the EU SPINE (Structural Proteomics in Europe) project, the PSB has produced potential drug targets in the battle against disease-causing bacteria and viruses.

“The CIBB is a concrete manifestation of the interdisciplinary and international scientific collaboration necessary today to push forward fundamental disease research in this new era of high-throughput biology” says Stephen Cusack, Head of EMBL’s Outstation in Grenoble. “It received generous funding from the European Union’s Framework Programme”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/CIBB

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>