Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A European Centre for Structural Biology inaugurated in Grenoble

10.01.2006


On 13 January the new Carl-Ivar Brändén Building (CIBB) will be inaugurated on the Polygone Scientifique Campus in Grenoble, France. The CIBB will be operated as a collaboration between major international and national partners based in Grenoble and is a further step in the development of the region as a European centre of excellence for structural biology.


The new Carl Ivar Braendén building.



The CIBB comprises two complementary units: the Partnership for Structural Biology (PSB), whose members include the European Molecular Biology Laboratory (EMBL), the European Synchrotron Radiation Facility (ESRF), the Institut de Biologie Structurale (IBS) and the Institut Laue-Langevin (ILL), and the Institut de Virologie Moléculaire et Structurale (IVMS, associated with the Université Joseph Fourier and the CNRS).

“These partners offer an amazing range of expertise in the life sciences, and the Grenoble campus is an ideal place to cluster them together in an important new centre for structural biology”, says Eva Pebay-Peyroula, Director of the IBS and current Chair of the PSB. “It benefits from the presence of some of the world’s most important instruments for structural biology: the ESRF’s X-ray source is one of the most powerful in the world, and the ILL offers the world’s leading source of neutrons.”


For many years the ESRF, ILL and EMBL have collaborated in offering scientists services and training connected to these instruments, already making the site a pivotal contact point for large European research projects and interdisciplinary collaborations.

The CIBB will house research groups and a complete pipeline for carrying out high-throughput structural investigations of proteins and other molecules, with a particular focus on molecules related to human diseases. The facilities include laboratories for high-throughput protein purification and expression, robotic crystallisation facilities, deuteration and isotope labelling, nuclear magnetic resonance, mass-spectrometry and cryo-electron microscopy.

“By assembling all the components of this pipeline in a unique platform under one roof, we can greatly speed up the process of investigating molecules and processes relevant to diseases,” says Rob Ruigrok, Professor at the Université Joseph Fourier and Director of the IVMS.

One example of work to be carried out at the CIBB will be the molecular and cellular basis of viral diseases. Researchers plan to investigate, for example, proteins on the surfaces of viruses which allow them to dock onto receptor proteins, and then gain entry into human cells. Once inside, the virus hijacks crucial cellular processes and eventually destroys the host, following a range of molecular interactions.

Investigating the key steps in these processes should allow the identification of specific molecular reactions that may be potential drug targets. Designing efficient inhibitors will require three-dimensional structures – atom-by-atom maps of proteins and other molecules. The necessary level of resolution cannot be obtained with microscopes, so scientists turn to high-intensity X-ray beams, like those produced by the ESRF, and neutrons from the ILL. The many types of skills and expertise necessary for such analyses of molecular structures have now been brought together in the CIBB.

This strategy of combining complementary expertise already has proven itself in past collaborative projects between the institutes. For example, since the PSB was founded in 2002, scientists have obtained crucial insights into fundamental biological processes that play a role in disease, and as part of the EU SPINE (Structural Proteomics in Europe) project, the PSB has produced potential drug targets in the battle against disease-causing bacteria and viruses.

“The CIBB is a concrete manifestation of the interdisciplinary and international scientific collaboration necessary today to push forward fundamental disease research in this new era of high-throughput biology” says Stephen Cusack, Head of EMBL’s Outstation in Grenoble. “It received generous funding from the European Union’s Framework Programme”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/CIBB

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>