Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A European Centre for Structural Biology inaugurated in Grenoble

10.01.2006


On 13 January the new Carl-Ivar Brändén Building (CIBB) will be inaugurated on the Polygone Scientifique Campus in Grenoble, France. The CIBB will be operated as a collaboration between major international and national partners based in Grenoble and is a further step in the development of the region as a European centre of excellence for structural biology.


The new Carl Ivar Braendén building.



The CIBB comprises two complementary units: the Partnership for Structural Biology (PSB), whose members include the European Molecular Biology Laboratory (EMBL), the European Synchrotron Radiation Facility (ESRF), the Institut de Biologie Structurale (IBS) and the Institut Laue-Langevin (ILL), and the Institut de Virologie Moléculaire et Structurale (IVMS, associated with the Université Joseph Fourier and the CNRS).

“These partners offer an amazing range of expertise in the life sciences, and the Grenoble campus is an ideal place to cluster them together in an important new centre for structural biology”, says Eva Pebay-Peyroula, Director of the IBS and current Chair of the PSB. “It benefits from the presence of some of the world’s most important instruments for structural biology: the ESRF’s X-ray source is one of the most powerful in the world, and the ILL offers the world’s leading source of neutrons.”


For many years the ESRF, ILL and EMBL have collaborated in offering scientists services and training connected to these instruments, already making the site a pivotal contact point for large European research projects and interdisciplinary collaborations.

The CIBB will house research groups and a complete pipeline for carrying out high-throughput structural investigations of proteins and other molecules, with a particular focus on molecules related to human diseases. The facilities include laboratories for high-throughput protein purification and expression, robotic crystallisation facilities, deuteration and isotope labelling, nuclear magnetic resonance, mass-spectrometry and cryo-electron microscopy.

“By assembling all the components of this pipeline in a unique platform under one roof, we can greatly speed up the process of investigating molecules and processes relevant to diseases,” says Rob Ruigrok, Professor at the Université Joseph Fourier and Director of the IVMS.

One example of work to be carried out at the CIBB will be the molecular and cellular basis of viral diseases. Researchers plan to investigate, for example, proteins on the surfaces of viruses which allow them to dock onto receptor proteins, and then gain entry into human cells. Once inside, the virus hijacks crucial cellular processes and eventually destroys the host, following a range of molecular interactions.

Investigating the key steps in these processes should allow the identification of specific molecular reactions that may be potential drug targets. Designing efficient inhibitors will require three-dimensional structures – atom-by-atom maps of proteins and other molecules. The necessary level of resolution cannot be obtained with microscopes, so scientists turn to high-intensity X-ray beams, like those produced by the ESRF, and neutrons from the ILL. The many types of skills and expertise necessary for such analyses of molecular structures have now been brought together in the CIBB.

This strategy of combining complementary expertise already has proven itself in past collaborative projects between the institutes. For example, since the PSB was founded in 2002, scientists have obtained crucial insights into fundamental biological processes that play a role in disease, and as part of the EU SPINE (Structural Proteomics in Europe) project, the PSB has produced potential drug targets in the battle against disease-causing bacteria and viruses.

“The CIBB is a concrete manifestation of the interdisciplinary and international scientific collaboration necessary today to push forward fundamental disease research in this new era of high-throughput biology” says Stephen Cusack, Head of EMBL’s Outstation in Grenoble. “It received generous funding from the European Union’s Framework Programme”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/CIBB

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>