Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal Liquefaction

09.01.2006


Hydration in the presence of borane or iodine catalysts smoothes the way for the liquefaction of semianthracite coal



The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers at the Max Planck Institute for Coal Research in Mülheim on the Ruhr have developed a new process that makes it possible to liquefy high-grade bituminous coal (semianthracite coal) for the first time. This type of coal has previously been used exclusively in combustion and gasification processes.

“Methods of coal liquefaction have been available since the beginning of the last century, but the cost has caused us to search for more effective new processes,” explains Matthias W. Haenel. Coal is a complicated, difficult to analyze mixture of organic components. In what is called the Bergius process for direct coal liquefaction, the coal is treated with hydrogen under pressure (>30 MPa) at 450 °C in the presence of a solvent and an iron oxide catalyst. The activity of this catalyst is low, however, because the solid iron oxide cannot enter the macromolecular network structure of the insoluble coal. Semianthracite coal, which only contains a small amount of volatile components, cannot be converted by this process at all. Haenel and his team hoped that a soluble catalyst would serve them better. They thought the family of borane catalysts, boron–hydrogen compounds known to transfer hydrogen atoms to organic molecules, seemed especially promising. Their studies of a German Magerkohle (low-volatile bituminous coal) showed that a mixture of sodium borohydride and iodine, which formed an iodine–borane catalyst in the reaction mixture, is particularly effective. Surprisingly, under the drastic reaction conditions used (25 MPa hydrogen pressure, 350 °C), iodine alone is catalytically active, though boron triiodide is best.


The solubility of the coal in pyridine is drastically increased by this treatment. One reason for this is that carbon–carbon bonds between aromatic and nonaromatic (aliphatic) parts of the molecules are broken and the free “bonding arms” are saturated with hydrogen (hydrated); the network structure of the coal is disrupted. In addition, the double bonds of the aromatic ring systems are partially hydrated so that the aliphatic content rises at the cost of the aromatic. The new process is the first “true” coal hydration in the sense of hydrogen being added to unsaturated structures. Once prepared in this way, high-rank coals could now be liquefied in a subsequent conventional hydrocracking process for the first time.

Author: Matthias W. Haenel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr (Germany), http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html

Title: The First Liquefaction of High-Grade Bituminous Coals by Preceding Hydrogenation with Homogeneous Borane or Iodine Catalysts

Angewandte Chemie International Edition, doi: 10.1002/anie.200502614

| Angewandte Chemie
Further information:
http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html
http://www.angewandte.de

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>