Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal Liquefaction

09.01.2006


Hydration in the presence of borane or iodine catalysts smoothes the way for the liquefaction of semianthracite coal



The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers at the Max Planck Institute for Coal Research in Mülheim on the Ruhr have developed a new process that makes it possible to liquefy high-grade bituminous coal (semianthracite coal) for the first time. This type of coal has previously been used exclusively in combustion and gasification processes.

“Methods of coal liquefaction have been available since the beginning of the last century, but the cost has caused us to search for more effective new processes,” explains Matthias W. Haenel. Coal is a complicated, difficult to analyze mixture of organic components. In what is called the Bergius process for direct coal liquefaction, the coal is treated with hydrogen under pressure (>30 MPa) at 450 °C in the presence of a solvent and an iron oxide catalyst. The activity of this catalyst is low, however, because the solid iron oxide cannot enter the macromolecular network structure of the insoluble coal. Semianthracite coal, which only contains a small amount of volatile components, cannot be converted by this process at all. Haenel and his team hoped that a soluble catalyst would serve them better. They thought the family of borane catalysts, boron–hydrogen compounds known to transfer hydrogen atoms to organic molecules, seemed especially promising. Their studies of a German Magerkohle (low-volatile bituminous coal) showed that a mixture of sodium borohydride and iodine, which formed an iodine–borane catalyst in the reaction mixture, is particularly effective. Surprisingly, under the drastic reaction conditions used (25 MPa hydrogen pressure, 350 °C), iodine alone is catalytically active, though boron triiodide is best.


The solubility of the coal in pyridine is drastically increased by this treatment. One reason for this is that carbon–carbon bonds between aromatic and nonaromatic (aliphatic) parts of the molecules are broken and the free “bonding arms” are saturated with hydrogen (hydrated); the network structure of the coal is disrupted. In addition, the double bonds of the aromatic ring systems are partially hydrated so that the aliphatic content rises at the cost of the aromatic. The new process is the first “true” coal hydration in the sense of hydrogen being added to unsaturated structures. Once prepared in this way, high-rank coals could now be liquefied in a subsequent conventional hydrocracking process for the first time.

Author: Matthias W. Haenel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr (Germany), http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html

Title: The First Liquefaction of High-Grade Bituminous Coals by Preceding Hydrogenation with Homogeneous Borane or Iodine Catalysts

Angewandte Chemie International Edition, doi: 10.1002/anie.200502614

| Angewandte Chemie
Further information:
http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html
http://www.angewandte.de

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>