Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of caspase-8 makes neuroblastoma more aggressive

06.01.2006


The caspase-8 gene plays a critical role in suppressing metastasis (spread) of neuroblastoma, and the expression of this gene is frequently absent in cancer cells that are aggressively metastasizing, according to investigators at St. Jude Children’s Research Hospital and the University of California at San Diego (UCSD). Neuroblastoma is a tumor of the nervous system and is the most common tumor in infants younger than 1 year of age; it accounts for 7-10 percent of childhood cancers.



In the absence of caspase-8 protein, the cell is significantly more capable of escaping from the primary tumor and spreading to other sites in the body, the researchers said. The investigators also showed in laboratory studies that restoring the expression of the caspase-8 gene suppressed neuroblastoma metastases.

The study’s findings are significant because they suggest that novel treatments that restore the tumor-suppression role of the caspase-8 gene might prevent the spread of neuroblastoma and improve patient outcome, according to Jill M. Lahti, PhD, an associate member of the Department of Genetics and Tumor Cell Biology. Lahti and David Cheresh, Ph.D., (UCSD) are senior authors of a report on these findings that appears in the January 5 issue of the journal Nature.


Caspase-8 triggers apoptosis by binding to molecules called integrins that project from the surface of cells, including neuroblastoma cells. Normally, integrin molecules anchor the cell to the extracellular matrix--the material outside the cell consisting of gel and fibers that support and provide structure to tissues. When cells become dislodged from the extracellular matrix, as happens during metastasis, the unbound integrin molecules are free to bind with caspase-8, Lahti said. The binding of caspase-8 to integrin then triggers integrin-mediated death (IMD), a form of apoptosis.

"Cells aren’t usually supposed to break away from their location in the body, so the IMD response disposes of wayward cells before they can cause trouble," Lahti explained. "We showed that neuroblastoma metastasis is especially potent in the absence of caspase-8."

To investigate the impact of the loss of caspase-8 and/or integrins on neuroblastoma metastasis, the team tested the ability of tumor cells removed from patients for their ability to metastasize in laboratory embryo models. When the team blocked expression of the caspase-8 gene in neuroblastoma cells implanted in these models, the cancer cells broke away more readily from the tumor and spread with higher frequencies to the lung and bone marrow.

When the team implanted human neuroblastoma cells into other adult laboratory models, they generated metastases to the ovary, adrenal glands, kidneys and liver. These metastases have lost expression and activity of caspase-8. These findings suggest that the loss of caspase-8 expression promotes metastases of neuroblastoma cells, the researchers reported.

Although the presence or absence of caspase-8 did not appear to affect the growth of the primary tumor, the researches discovered that significantly more cells outside the tumor underwent apoptosis when the gene was present; and significantly fewer underwent apoptosis went the gene was absent. The team made a similar finding in human patients whose neuroblastoma had spread from the primary tumor.

"Our findings provide a basis for designing novel treatments to prevent neuroblastoma metastases," Lahti said.

Kelly Pery | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>