Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of caspase-8 makes neuroblastoma more aggressive

06.01.2006


The caspase-8 gene plays a critical role in suppressing metastasis (spread) of neuroblastoma, and the expression of this gene is frequently absent in cancer cells that are aggressively metastasizing, according to investigators at St. Jude Children’s Research Hospital and the University of California at San Diego (UCSD). Neuroblastoma is a tumor of the nervous system and is the most common tumor in infants younger than 1 year of age; it accounts for 7-10 percent of childhood cancers.



In the absence of caspase-8 protein, the cell is significantly more capable of escaping from the primary tumor and spreading to other sites in the body, the researchers said. The investigators also showed in laboratory studies that restoring the expression of the caspase-8 gene suppressed neuroblastoma metastases.

The study’s findings are significant because they suggest that novel treatments that restore the tumor-suppression role of the caspase-8 gene might prevent the spread of neuroblastoma and improve patient outcome, according to Jill M. Lahti, PhD, an associate member of the Department of Genetics and Tumor Cell Biology. Lahti and David Cheresh, Ph.D., (UCSD) are senior authors of a report on these findings that appears in the January 5 issue of the journal Nature.


Caspase-8 triggers apoptosis by binding to molecules called integrins that project from the surface of cells, including neuroblastoma cells. Normally, integrin molecules anchor the cell to the extracellular matrix--the material outside the cell consisting of gel and fibers that support and provide structure to tissues. When cells become dislodged from the extracellular matrix, as happens during metastasis, the unbound integrin molecules are free to bind with caspase-8, Lahti said. The binding of caspase-8 to integrin then triggers integrin-mediated death (IMD), a form of apoptosis.

"Cells aren’t usually supposed to break away from their location in the body, so the IMD response disposes of wayward cells before they can cause trouble," Lahti explained. "We showed that neuroblastoma metastasis is especially potent in the absence of caspase-8."

To investigate the impact of the loss of caspase-8 and/or integrins on neuroblastoma metastasis, the team tested the ability of tumor cells removed from patients for their ability to metastasize in laboratory embryo models. When the team blocked expression of the caspase-8 gene in neuroblastoma cells implanted in these models, the cancer cells broke away more readily from the tumor and spread with higher frequencies to the lung and bone marrow.

When the team implanted human neuroblastoma cells into other adult laboratory models, they generated metastases to the ovary, adrenal glands, kidneys and liver. These metastases have lost expression and activity of caspase-8. These findings suggest that the loss of caspase-8 expression promotes metastases of neuroblastoma cells, the researchers reported.

Although the presence or absence of caspase-8 did not appear to affect the growth of the primary tumor, the researches discovered that significantly more cells outside the tumor underwent apoptosis when the gene was present; and significantly fewer underwent apoptosis went the gene was absent. The team made a similar finding in human patients whose neuroblastoma had spread from the primary tumor.

"Our findings provide a basis for designing novel treatments to prevent neuroblastoma metastases," Lahti said.

Kelly Pery | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>