Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists calculate structure of puzzling ’scrambler’ molecule

06.01.2006


Chemists have calculated the structure of a very unusual molecule, one whose hyperactive atoms have earned it the nickname “the scrambler.”



This highly caustic “protonated methane,” or CH5+, is also called a “super acid,” and it is a short-lived player in the chemical reactions that make petroleum products.

CH5+ should also be present in interstellar clouds where stars and planets form, said Anne B. McCoy, professor of chemistry at Ohio State University. McCoy hopes that the work she and her team are publishing in the current issue of the journal Science will one day give astronomers the tools they need to determine once and for all whether the molecule is really out there in space.


To identify chemicals on earth and in outer space, scientists record the spectrum of light absorbed by a molecule. Each molecule ever identified has its own unique spectrum, resembling lines in a bar code.

Since the 1960s, when petrochemical experiments suggested the existence of CH5+, scientists have been trying to record a complete spectrum of it, but the molecule won’t sit still. Scientists who tried to image CH5+ have found that it’s like a three-year-old child – impossible to photograph, except in a blur.

“CH5+ has five hydrogen atoms scrambling around a carbon atom that sits at the center,” McCoy explained. The hydrogen atoms are simultaneously rotating and vibrating.

Because the atoms are always on the move, scientists have difficulty interpreting the spectrum. Still, they have recorded several CH5+ spectra experimentally.

Study coauthors David Nesbitt, Chandra Savage, and Feng Dong of JILA, a joint research institute of the University of Colorado at Boulder and the National Institute of Standards and Technology, report the most recent and best resolved of these spectra to date in the Science paper. But in spite of this progress, researchers have not been able to match the lines in the CH5+ bar code to any specific motions of the molecule.

That’s what McCoy and Professor Joel M. Bowman of Emory University did mathematically. For certain features on the spectrum, they calculated what the motions must be.

The result is most complete vibrational spectra ever calculated – a theoretical picture of the molecule’s structure.

The chemists’ employed a unique strategy in their calculations.

“Although the hydrogen atoms are constantly scrambling, the overall range of types of structures can be characterized by three basic configurations,” McCoy said. One configuration corresponds to a low energy state for the molecule, and the other two to higher energy states. McCoy, Bowman, Ohio State graduate student Lindsay M. Johnson and Emory postdoctoral researcher Xinchuan Huang calculated spectra for all three structures.

That in itself was standard procedure, she said – but then they went on to examine the probability that the molecule would assume each of those three structures, and used that information to weight their calculations.

“It turns out that this was the crucial step,” McCoy said.

She acknowledged that her team hasn’t yet assembled a full picture of CH5+, since their calculations accounted for the vibration of the molecule but not its constant rotation. That will be their next step. If successful, they’ll have a complete theoretical view of what the molecule’s spectrum should look like.

“The ultimate goal of this work is to identify a kind of signature for CH5+,” McCoy said. “Once we have it, we can compare it to what is observed from astronomical measurements to determine its abundance in different regions of space.”

“From a more fundamental perspective, one thing that intrigues me is how we can characterize molecules like CH5+ that have no single well-defined structure and how this lack of a well-defined structure impacts its reactivity,” she continued.

She and her coauthors have started calculating what would happen when the hydrogen atoms in CH5+ are replaced with deuterium, also known as “heavy hydrogen.” They suspect that adding one or two heavy hydrogen atoms will stabilize the remaining hydrogen atoms and settle “the scrambler” down once and for all.

Anne B. McCoy | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>