Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists calculate structure of puzzling ’scrambler’ molecule

06.01.2006


Chemists have calculated the structure of a very unusual molecule, one whose hyperactive atoms have earned it the nickname “the scrambler.”



This highly caustic “protonated methane,” or CH5+, is also called a “super acid,” and it is a short-lived player in the chemical reactions that make petroleum products.

CH5+ should also be present in interstellar clouds where stars and planets form, said Anne B. McCoy, professor of chemistry at Ohio State University. McCoy hopes that the work she and her team are publishing in the current issue of the journal Science will one day give astronomers the tools they need to determine once and for all whether the molecule is really out there in space.


To identify chemicals on earth and in outer space, scientists record the spectrum of light absorbed by a molecule. Each molecule ever identified has its own unique spectrum, resembling lines in a bar code.

Since the 1960s, when petrochemical experiments suggested the existence of CH5+, scientists have been trying to record a complete spectrum of it, but the molecule won’t sit still. Scientists who tried to image CH5+ have found that it’s like a three-year-old child – impossible to photograph, except in a blur.

“CH5+ has five hydrogen atoms scrambling around a carbon atom that sits at the center,” McCoy explained. The hydrogen atoms are simultaneously rotating and vibrating.

Because the atoms are always on the move, scientists have difficulty interpreting the spectrum. Still, they have recorded several CH5+ spectra experimentally.

Study coauthors David Nesbitt, Chandra Savage, and Feng Dong of JILA, a joint research institute of the University of Colorado at Boulder and the National Institute of Standards and Technology, report the most recent and best resolved of these spectra to date in the Science paper. But in spite of this progress, researchers have not been able to match the lines in the CH5+ bar code to any specific motions of the molecule.

That’s what McCoy and Professor Joel M. Bowman of Emory University did mathematically. For certain features on the spectrum, they calculated what the motions must be.

The result is most complete vibrational spectra ever calculated – a theoretical picture of the molecule’s structure.

The chemists’ employed a unique strategy in their calculations.

“Although the hydrogen atoms are constantly scrambling, the overall range of types of structures can be characterized by three basic configurations,” McCoy said. One configuration corresponds to a low energy state for the molecule, and the other two to higher energy states. McCoy, Bowman, Ohio State graduate student Lindsay M. Johnson and Emory postdoctoral researcher Xinchuan Huang calculated spectra for all three structures.

That in itself was standard procedure, she said – but then they went on to examine the probability that the molecule would assume each of those three structures, and used that information to weight their calculations.

“It turns out that this was the crucial step,” McCoy said.

She acknowledged that her team hasn’t yet assembled a full picture of CH5+, since their calculations accounted for the vibration of the molecule but not its constant rotation. That will be their next step. If successful, they’ll have a complete theoretical view of what the molecule’s spectrum should look like.

“The ultimate goal of this work is to identify a kind of signature for CH5+,” McCoy said. “Once we have it, we can compare it to what is observed from astronomical measurements to determine its abundance in different regions of space.”

“From a more fundamental perspective, one thing that intrigues me is how we can characterize molecules like CH5+ that have no single well-defined structure and how this lack of a well-defined structure impacts its reactivity,” she continued.

She and her coauthors have started calculating what would happen when the hydrogen atoms in CH5+ are replaced with deuterium, also known as “heavy hydrogen.” They suspect that adding one or two heavy hydrogen atoms will stabilize the remaining hydrogen atoms and settle “the scrambler” down once and for all.

Anne B. McCoy | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>