Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists calculate structure of puzzling ’scrambler’ molecule

06.01.2006


Chemists have calculated the structure of a very unusual molecule, one whose hyperactive atoms have earned it the nickname “the scrambler.”



This highly caustic “protonated methane,” or CH5+, is also called a “super acid,” and it is a short-lived player in the chemical reactions that make petroleum products.

CH5+ should also be present in interstellar clouds where stars and planets form, said Anne B. McCoy, professor of chemistry at Ohio State University. McCoy hopes that the work she and her team are publishing in the current issue of the journal Science will one day give astronomers the tools they need to determine once and for all whether the molecule is really out there in space.


To identify chemicals on earth and in outer space, scientists record the spectrum of light absorbed by a molecule. Each molecule ever identified has its own unique spectrum, resembling lines in a bar code.

Since the 1960s, when petrochemical experiments suggested the existence of CH5+, scientists have been trying to record a complete spectrum of it, but the molecule won’t sit still. Scientists who tried to image CH5+ have found that it’s like a three-year-old child – impossible to photograph, except in a blur.

“CH5+ has five hydrogen atoms scrambling around a carbon atom that sits at the center,” McCoy explained. The hydrogen atoms are simultaneously rotating and vibrating.

Because the atoms are always on the move, scientists have difficulty interpreting the spectrum. Still, they have recorded several CH5+ spectra experimentally.

Study coauthors David Nesbitt, Chandra Savage, and Feng Dong of JILA, a joint research institute of the University of Colorado at Boulder and the National Institute of Standards and Technology, report the most recent and best resolved of these spectra to date in the Science paper. But in spite of this progress, researchers have not been able to match the lines in the CH5+ bar code to any specific motions of the molecule.

That’s what McCoy and Professor Joel M. Bowman of Emory University did mathematically. For certain features on the spectrum, they calculated what the motions must be.

The result is most complete vibrational spectra ever calculated – a theoretical picture of the molecule’s structure.

The chemists’ employed a unique strategy in their calculations.

“Although the hydrogen atoms are constantly scrambling, the overall range of types of structures can be characterized by three basic configurations,” McCoy said. One configuration corresponds to a low energy state for the molecule, and the other two to higher energy states. McCoy, Bowman, Ohio State graduate student Lindsay M. Johnson and Emory postdoctoral researcher Xinchuan Huang calculated spectra for all three structures.

That in itself was standard procedure, she said – but then they went on to examine the probability that the molecule would assume each of those three structures, and used that information to weight their calculations.

“It turns out that this was the crucial step,” McCoy said.

She acknowledged that her team hasn’t yet assembled a full picture of CH5+, since their calculations accounted for the vibration of the molecule but not its constant rotation. That will be their next step. If successful, they’ll have a complete theoretical view of what the molecule’s spectrum should look like.

“The ultimate goal of this work is to identify a kind of signature for CH5+,” McCoy said. “Once we have it, we can compare it to what is observed from astronomical measurements to determine its abundance in different regions of space.”

“From a more fundamental perspective, one thing that intrigues me is how we can characterize molecules like CH5+ that have no single well-defined structure and how this lack of a well-defined structure impacts its reactivity,” she continued.

She and her coauthors have started calculating what would happen when the hydrogen atoms in CH5+ are replaced with deuterium, also known as “heavy hydrogen.” They suspect that adding one or two heavy hydrogen atoms will stabilize the remaining hydrogen atoms and settle “the scrambler” down once and for all.

Anne B. McCoy | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>