Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments help explain mysterious ’floppy’ space molecule

06.01.2006


A laboratory method developed for making and analyzing cold, concentrated samples of a mysterious "floppy" molecule thought to be abundant only in outer space has revealed new data that help explain the molecule’s properties.



The advance, described in the Jan. 6 issue of Science,* is a step toward overcoming a decades-old challenge in chemistry--explaining reactions that occur within very cold clouds among the stars, and perhaps for developing new chemical processes. The paper combines experiments performed by David Nesbitt and colleagues at JILA, a joint institute of the Commerce Department’s National Institute of Standards and Technology (NIST) and University of Colorado at Boulder, with theoretical predictions made with Joel Bowman at Emory University in Atlanta, Ga., and Anne McCoy at The Ohio State University in Columbus, Ohio.

Most molecules have a rigid three-dimensional (3D) structure. The subject of the new study is "protonated" methane, which contains one carbon atom and five hydrogen atoms, one of which is ionized, leaving nothing but a proton (a particle with a positive charge). The five protons from the hydrogen atoms scramble for four bonds around the molecule as if playing a continuous game of musical chairs. In the process, the molecule classically vibrates and rotates in a bizarre manner, morphing between several 3D structures with nearly identical energy levels. (Animation available at http://www.nist.gov/public_affairs/images/floppy_animation.htm.) Chemists have spent decades trying to explain why and how this occurs, a challenge that has seemed insurmountable until recently.


Protonated methane is a so-called "super acid." This class of molecule has been shown to be more than a million times more powerful than conventional acids and is more effective in inducing reactions that produce solvents and many other important industrial products.

Many theories have been published on the puzzling behavior of this charged molecule (or ion), but experiments must be done to match the ion’s energy characteristics with its physical motions, and such data are difficult to collect and understand. In particular, scientists are interested in how the molecule absorbs different wavelengths of infrared (IR) light, which provides clues about nuclear motion and chemical bonds and structures.

The JILA method generates concentrated amounts of the ion at cold enough temperatures to simplify the complex IR spectrum so it can be analyzed. The data strike a balance between detail and simplicity, providing useful information that is still challenging but easier to understand than ever before. This enabled the authors of the Science paper to match predicted changes in energy to specific vibrations and partially characterize the ion’s structure and dynamics. For example, they were able to correlate one intense spectral feature to a transition between two 3D structures with equivalent energy levels.

Previously published spectra of this molecule have either been too low resolution to "see" this motion, or too hot (and therefore too complex) to analyze.

"The experiments have provided the first jet-cooled, high-resolution spectrum of this highly fluxional molecule," says Nesbitt, a NIST Fellow who led the JILA experimental team. "This has been among the most sought-after IR spectra since the first appearance of this molecule in mass spectrometers over 50 years ago. This is a problem that has occupied many careers; every piece helps."

The JILA method involves making methane gas at high temperature and pressure, and expanding it into a vacuum to cool the molecules to 10 K (-442 degrees F). The cold molecules then file through an opening just 1 millimeter wide, where they are hit with a "lightning bolt" of electrical current that generates high concentrations of highly reactive ions. The key to mass production is to surround the molecules with enough electrons to make the entire gas mixture neutral in charge, Nesbitt says.

For the analysis step, JILA scientists shine an infrared laser on the cold ions, and detect the light that passes through. The light that is lost, or the small amount absorbed by the molecules, is analyzed to obtain a pattern of absorption at different wavelengths. The technique is very sensitive, thanks to methods for detecting trace absorption of the laser light and manipulating the electrical discharge to maximize the ion concentration levels.

Future and ongoing studies will focus on matching the ion’s IR absorption characteristics with its rotational structure, including end-over-end tumbling. "Protonated methane still has a few tricks up its sleeve," Nesbitt cautions.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/images/floppy_animation.htm

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>