Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where ’jumping genes’ fear to tread

06.01.2006


Researchers identify large tracks of DNA refractory to mobile element insertion



Scientists from the University of Queensland report in the journal Genome Research that large segments of the human genome are conspicuously devoid of ubiquitous mobile DNA elements called transposons. The locations of these regions are highly conserved among mammalian species and are enriched in genes crucial for the regulation of developmental processes.

Transposons, often called "jumping genes," are DNA sequences that have the capacity to move from one chromosomal site to another. More than three million copies of transposons have accumulated in humans throughout the course of evolution and now comprise an estimated 45% of the total DNA content in the human genome.


These mobile genetic elements are scattered throughout the human genome – separated, on average, by only 500 base pairs. But Dr. John Mattick’s laboratory at the University of Queensland, Australia, identified long tracks of genomic segments (greater than 10 kilobases in length) that lack transposable elements. His team identified 860 such sequences in humans, 993 in mice, and 559 in opossums. They named these segments TFRs, or transposon-free regions.

"Strikingly," says Mattick, "many TFRs in the human genome occur in the same position in the mouse and opossum genomes, despite the fact that transposons entered each lineage independently, after each species diverged from a common ancestor. It appears that many TFRs are evolutionarily conserved features that existed prior to – and have been largely maintained since – the divergence of eutherian mammals and marsupials approximately 170 million years ago."

The opossum was chosen for inclusion in the analysis because it is a marsupial that has a similar load of transposable elements compared to mice and humans but is evolutionarily distant from the two species. In contrast, the genomes of chicken and fish, which diverged from humans more than 300 million years ago, do not have a significant density of transposons.

Given the strong evolutionary conservation of the TFRs, Mattick’s group hypothesized that they are regions of significant biological importance. Upon further characterizing the TFRs, they discovered that many (85%) overlapped at least one annotated gene and that almost all (94%) overlapped at least one known RNA transcript. In addition, the TFRs were enriched in microRNAs, in genes that encode proteins with putative DNA-binding activity, and in genes that are involved in developmental processes. Another striking feature of TFRs was that they are associated with ultra-conserved regions, or genomic segments longer than 200 base pairs with 100% identity between human, mouse, and rat. All of these observations strongly support an important role for TFRs in critical biological processes.

"The majority of the TFRs lie outside of protein-coding sequences, so they presumably represent regions of regulatory information or RNA transcripts that cannot be disrupted. However, it’s difficult to explain mechanistically the requirement of 10 or more kilobases of uninterrupted sequence in terms of the current paradigms of transcriptional regulation," explains Mattick. "It appears that TFRs might be the passive signatures of one or more poorly understood mechanisms of gene regulation that operate in higher organisms, suggesting a wider role for noncoding sequences than has hitherto been appreciated."

The work was conducted under Mattick’s guidance by graduate students Cas Simons and Michael Pheasant, as well as by Dr. Igor Makunin, a postdoctoral researcher.

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>