Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tandem transcripts team together

06.01.2006


In the January issue of the journal Genome Research, two teams of scientists describe a widespread phenomenon in the human genome called transcription-induced chimerism (TIC), where two adjacent genes produce a single, fused RNA transcript. The work has implications for drug development, as well as for understanding mechanisms underlying gene evolution, transcription regulation, and genomic organization.



Dr. Roderic Guigó’s group from the Centre de Regulació Genòmica (Barcelona, Spain), in collaboration with the group of Dr. Stylianos Antonarakis from the University of Geneva (Switzerland), and Dr. Rotem Sorek’s team from Compugen (Tel Aviv, Israel) independently derived estimates that at least 2-5% of the genes in the human genome are involved in these events.

"In a certain way, this phenomenon challenges our very concept of a gene," points out Guigó. "The ’one gene, one protein’ rule has been fundamental to molecular biology. However, as we deepen our understanding of the eukaryotic genome, a picture emerges that challenges this paradigm – not a picture in which the sequences in the genome have distinct functions, but rather one in which the sequences participate in multiple transcripts, encoding molecules with diverse functionality."


Sorek’s team systematically identified over 200 cases of TIC involving 421 human genes. They found that genes involved in TIC events often reside closer together than other gene pairs in the genome. In addition, they discovered that the intergenic sequences of TICs were processed via the same standard eukaryotic splicing machinery that removes introns from RNA transcripts.

Following a similar whole-genome survey of splicing events, Guigó’s laboratory focused on the ENCODE regions, a set of DNA sequences, representing 1% of the genome, that have been chosen by a large research consortium for more rigorous, in-depth analyses. When focusing on these regions, the researchers identified six TIC events (involving 3.6% of tandem gene pairs), only one of which was identified during the whole-genome survey. This indicates that future investigations of specific regions may reveal a greater prevalence of TIC events genome-wide.

Sorek’s team unraveled an interesting gene fusion event involving genes called PIP5K1A and PSD4, which reside side by side on human chromosome 1. These genes produce a fusion product that, during the course of evolution, inserted into a different location in the human genome (chromosome 10), becoming a new gene that is actively transcribed in a variety of tissues.

"Our findings might have applications in drug development," says Sorek. "Recombinant engineered fused proteins are currently being developed as therapeutic proteins by several companies and institutes. The problem is that these proteins often elicit an immune response and therefore, are toxic and cannot be used as efficient drugs. The understanding that some gene pairs are naturally produced as fused proteins might lead, in the future, to the development of non-toxic engineered fused proteins that could be used as drugs."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>