Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell stress protein linked to aggressive breast cancer

05.01.2006


A groundbreaking study led by Northwestern University researchers has demonstrated that a protein called alphaB-crystallin, which normally protects cells from stress damage, triggers events that may cause breast cancer when overactive.



Breast cancer is the most common cancer in women and is responsible for over 400,000 deaths annually in women throughout the world. Most of these deaths are the result of aggressive breast tumors that often fail to respond to current treatments.

The researchers found that women whose breast tumors express the alphaB-crystallin protein have a shorter survival, suggesting that alphaB-crystallin may be a useful molecular marker to identify women with aggressive breast cancer and to develop new targeted cancer therapies.


The study, which was published in the January issue of the Journal of Clinical Investigation, was led by Vincent L. Cryns, M.D., associate professor of medicine and director of the Cell Death Regulation Laboratory at Northwestern University Feinberg School of Medicine, and a researcher at The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Cryns and colleagues found that introducing the alphaB-crystallin gene into non-cancerous breast cells transformed them into breast cancer cells. These experiments took advantage of a powerful technique to grow breast cells as three-dimensional (3D) gland-like structures that are similar to those present in the normal breast. However, when the researchers introduced alphaB-crystallin into non-cancerous breast cells, the cells started growing uncontrollably and formed enlarged 3D masses that resemble breast tumors.

The experiments were conducted by Jose V. Moyano, a post-doctoral fellow in the Cryns lab, who was lead author on the study.

"Basically, breast cancer cells have hijacked alphaB-crystallin, a protein that normally protects cells against stress injury and death, and used it to promote their uncontrolled growth," Cryns reflected.

The investigators also showed that alphaB-crystallin activates a key molecular pathway, the MEK-ERK pathway, that leads to unrestrained cell growth in cancer, and that drug inhibitors of this pathway block the cancerous effects of alphaB-crystallin.

"Currently, we don’t have any targeted treatments like tamoxifen or Herceptin for the aggressive type of breast tumors that express alphaB-crystallin. Our results suggest that these tumors may respond to drugs that block this important pathway activated by alphaB-crystallin," Cryns said.

Cryns’ laboratory group also observed that non-cancerous breast cells genetically manipulated to express alphaB-crystallin form aggressive breast tumors when injected into mice, confirming their malignant nature.

What’s more, the team found that these mouse tumors were similar in many respects to human breast tumors which express alphaB-crystallin, suggesting that this mouse model may be useful for testing new treatments for these poor-prognosis tumors. Indeed, the researchers are currently exploring whether drug inhibitors of the MEK-ERK pathway block breast tumor growth in mice.

Collaborating with Cryns and Moyano were Torsten O. Nielson and Dmitry Turbin, University of British Columbia, Vancouver; and Charles M. Perou and Gamze Karaca, University of North Carolina at Chapel Hill. Other members of the research team at Northwestern University were Fruma Yehiely, Joseph R. Evans, Feng Chen, Meiling Lu, Michael E. Werner, Leslie Diaz and Elizabeth Wiley.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>