Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell stress protein linked to aggressive breast cancer

05.01.2006


A groundbreaking study led by Northwestern University researchers has demonstrated that a protein called alphaB-crystallin, which normally protects cells from stress damage, triggers events that may cause breast cancer when overactive.



Breast cancer is the most common cancer in women and is responsible for over 400,000 deaths annually in women throughout the world. Most of these deaths are the result of aggressive breast tumors that often fail to respond to current treatments.

The researchers found that women whose breast tumors express the alphaB-crystallin protein have a shorter survival, suggesting that alphaB-crystallin may be a useful molecular marker to identify women with aggressive breast cancer and to develop new targeted cancer therapies.


The study, which was published in the January issue of the Journal of Clinical Investigation, was led by Vincent L. Cryns, M.D., associate professor of medicine and director of the Cell Death Regulation Laboratory at Northwestern University Feinberg School of Medicine, and a researcher at The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Cryns and colleagues found that introducing the alphaB-crystallin gene into non-cancerous breast cells transformed them into breast cancer cells. These experiments took advantage of a powerful technique to grow breast cells as three-dimensional (3D) gland-like structures that are similar to those present in the normal breast. However, when the researchers introduced alphaB-crystallin into non-cancerous breast cells, the cells started growing uncontrollably and formed enlarged 3D masses that resemble breast tumors.

The experiments were conducted by Jose V. Moyano, a post-doctoral fellow in the Cryns lab, who was lead author on the study.

"Basically, breast cancer cells have hijacked alphaB-crystallin, a protein that normally protects cells against stress injury and death, and used it to promote their uncontrolled growth," Cryns reflected.

The investigators also showed that alphaB-crystallin activates a key molecular pathway, the MEK-ERK pathway, that leads to unrestrained cell growth in cancer, and that drug inhibitors of this pathway block the cancerous effects of alphaB-crystallin.

"Currently, we don’t have any targeted treatments like tamoxifen or Herceptin for the aggressive type of breast tumors that express alphaB-crystallin. Our results suggest that these tumors may respond to drugs that block this important pathway activated by alphaB-crystallin," Cryns said.

Cryns’ laboratory group also observed that non-cancerous breast cells genetically manipulated to express alphaB-crystallin form aggressive breast tumors when injected into mice, confirming their malignant nature.

What’s more, the team found that these mouse tumors were similar in many respects to human breast tumors which express alphaB-crystallin, suggesting that this mouse model may be useful for testing new treatments for these poor-prognosis tumors. Indeed, the researchers are currently exploring whether drug inhibitors of the MEK-ERK pathway block breast tumor growth in mice.

Collaborating with Cryns and Moyano were Torsten O. Nielson and Dmitry Turbin, University of British Columbia, Vancouver; and Charles M. Perou and Gamze Karaca, University of North Carolina at Chapel Hill. Other members of the research team at Northwestern University were Fruma Yehiely, Joseph R. Evans, Feng Chen, Meiling Lu, Michael E. Werner, Leslie Diaz and Elizabeth Wiley.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>