Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer researchers describe gene that halts spread of aggressive childhood cancer

05.01.2006


A team of cancer researchers has shown that a gene commonly lost during neuroblastoma tumor formation, one of the most aggressive cancers in babies and children, is in fact a "metastasis suppressor" gene. The researchers, from the Moores Cancer Center at the University of California, San Diego (UCSD) Medical Center and St. Jude Children’s Research Hospital in Memphis, also describe how the gene, caspase 8, works.



The findings, published in the January 5 issue of the journal Nature, provide important new insights into the biology of metastatic disease and lay the necessary groundwork for developing targeted therapies designed to halt the spread of neuroblastoma, and possibly other cancers.

"A major problem with cancer is not necessarily the primary tumor formation, but the ability of some tumor cells within that primary tumor to metastasize, or travel to distant sites, where they develop new tumors," said David Cheresh, Ph.D., senior author on the paper and Associate Director for Translational Research at the Moores UCSD Cancer Center. Cheresh is also a professor of pathology at the UCSD School of Medicine.


Caspase 8’s normal role is to act as a suicide gene, killing the cell it is housed within in response to cues from the immune system. The UCSD group had previously shown, in normal human cells, that caspase 8 can be activated even without signals from the immune system, particularly when the cell is present in a foreign location. This acts as a mechanism to ensure the cells would survive only in appropriate tissues; for example, liver cells in liver tissue and skin cells in skin tissue.

"The exciting point of the new research is that we are finding that even tumor cells will try to make sense of their location, and when they cannot, they will often activate this suicide pathway," said Dwayne Stupack, Ph.D., first author on the paper and assistant professor of pathology at UCSD.

The team showed that when a neuroblastoma cell attempts to migrate away from the primary tumor and encounters new tissues, cell-surface molecules called integrins detect that the cell is in "foreign territory" and send "death" signals into the cell. These signals activate caspase 8, which then instructs the cell to commit suicide. The researchers have coined this mechanism "integrin-mediated death."

Some cancer cells, however, have found a way to escape the normal death-promoting machinery the body has developed. These cells may suppress or even delete caspase 8, freeing themselves to become much more aggressive and survive in distant sites in the body.

"We’ve shown now in animals and human tissue that as soon as the neuroblastoma cells lose caspase 8, suddenly you have a much more aggressive disease," said Stupack. "This explains why we see the loss of caspase 8 in 70 percent of aggressive neuroblastomas in children."

Neuroblastoma is a solid tumor cancer that usually originates in the abdomen near the kidneys. In the majority of cases (about 70 percent), by the time of diagnosis the disease has already metastasized. The average age at diagnosis is two years old.

"It is clear this gene is a deciding factor in whether or not a cancer cell becomes metastatic, yet, surprisingly, it does not appear to be involved at all in the initial formation of the cancer," said Stupack. "As such, it is one of only a handful of true metastasis suppressor genes currently known."

A number of other cancers may use this same mechanism for regulating their metastatic properties, which the researchers are now studying. Caspase 8 loss or suppression is seen in about 70 percent of small cell lung cancer, about 10 percent of colon cancer and about 35 percent of medulloblastoma. While genetic mutation will sometimes delete both copies of the caspase 8 gene, typically the gene is simply silenced.

This paper opens up a new way of thinking about cancer therapy.

"Now we have a roadmap for attacking not just the primary cancer but the metastatic cascade, the metastatic disease process, as well," said Cheresh. "That is new, and very exciting. We now know the Achilles heel of the metastatic tumor cell. If we can develop drugs targeted at restoring caspase 8, we may be able to stop metastasis. That now appears feasible."

The study was co-authored by a team from St. Jude that included Tal Teitz, Ph.D., Peter Houghton, M.D., and Jill Lahti, Ph.D., as well as by UCSD scientists Matthew Potter, Ph.D., and David Mikolon. Lahti, the senior scientist in the St. Jude group, has collaborated with Stupack for several years.

Nancy Stringer | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>