Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Bats a reservoir for Ebola virus

05.01.2006


IRD researchers have succeeded in the first identification of bats as a potential natural reservoir of Ebola virus. Several epidemics of haemorrhagic fever have raged in the Republic of Congo and Gabon since 2001, hitting both humans and primates simultaneously. The virus transmission route from great apes to humans was already known, yet neither the natural reservoir nor the means of prior viral transmission to these primates had hitherto been identified.



Today scientists from the IRD and the CIRMF (1) are publishing in the journal Nature a study on small vertebrates captured near carcasses of infected primates. The research team detected specific Ebola virus antibodies in the serum of three species of tropical fruit bats. And revealed the presence of viral genome fragments in the liver and spleen of these vertebrates. Observations indicated that the large primates become contaminated directly by contact with these bats. These results are an essential element for understanding Ebola virus’s cycle in its natural environment and could prove decisive for the prevention of human Ebola virus epidemics.

Ebola virus (of the Filoviridae family) was first identified in 1976 in the Democratic Republic of Congo (ex- Zaire). It has been the source of several lethal epidemics in central Africa. Four subtypes exist, three of which rage on the African continent. The zaire subtype, the most dangerous for humans, was responsible for eight epidemics which have hit Gabon and the Republic of Congo since 1995. Infection by this subtype in humans is expressed by a violent haemorrhagic fever which in 80 % of cases kills the victim in a few days. There has been a succession of 14 epidemics of Ebola in Africa since 1976. Ten of which were caused by the zaire sub-type, generating 1850 cases resulting in 1300 deaths.


Viral transmission to humans occurs by way of direct contact with infected primate carcasses (2). However, although they are the source of human infection, these animals are not the reservoir for the virus. The large primates develop the disease and die only days after themselves being infected, following contamination events provoked by contact with the reservoir. Numerous investigations, conducted since 1976 and aiming to identify this reservoir, have been unsuccessful. Eric Leroy of the IRD in Gabon and his co-workers from the CIRMF (1) have now identified some tropical bat species as a potential Ebola virus reservoir, the fruit of studies they undertook between 2001 and 2003 in the border region between Gabon and the Republic of Congo. They publish their findings today.

The human epidemics that have flared up since 2001 were linked to multiple viral outbreaks in several animal species including chimpanzees, gorillas and duiker. During these epidemic episodes, the researchers captured about 1000 small vertebrates in good health (rodents, shrews, bats, birds and squirrels) from the vicinity of carcasses of infected primates. They performed a range of analyses: a search for specific Ebola virus antibodies in the serum, and for viral genome in certain organs; isolation of the virus on sensitive cell lines; immunohistochemistry of organ sections.

These techniques helped detect specific zaire subtype antibodies in the serum of three species of bat: Hypsignasthus monstrosus, Epomops franqueti and Myonycteris torquata. Also demonstrated was the presence of Ebola RNA sequences in the liver and spleen of these same animals. These bats are therefore Ebola virus carriers without developing the disease, which indicates them to be a potential natural reservoir for that virus.

Epidemiological observations, moreover, showed the peak of mortality in the large primates to coincide with the dry season, a period during which food resources decline considerably. The bats and the primates hence enter into competition for feeding, which would increase occasions when they would come closer together and lead to more frequent contact. A further element is that the dry season is a time when bats give birth. Under the effect of several factors (food deficiencies, competition between males and parturition), the level and nature of immune responses in the bats probably change substantially during this period.

A consequence of such conditions would be a resumption of viral replication, even the emergence of infectious virus in the blood of these animals. The large primates would be contaminated when the two species gather in close proximity to eat the fruit from the same tree, by way of direct contact with blood and placental fluids of bats released when female bats gave birth. A further array of investigations are under way: first seeking to isolate the virus in these tissues and subsequently to confirm the contamination and transmission routes described.

These results shed new light on the episodic nature of Ebola epidemics in primates and humans. In addition, clues as to the development of prevention strategies in order to protect the primates from Ebola virus could be provided by improved knowledge of the ecological distribution of these species of bats. The latter, especially Hypsignathus monstrosus, are indeed often caught and eaten by people living in epidemic-prone regions. Consequently, public awareness programmes and an input of food supplies essential for the needs of remote villages during the dry season should help avoid Ebola virus transmission from the bats to humans.

(1) CIRMF

(2) See scientific bulletin n° 192 – January 2004, "Ebola virus a threat to great ape populations ". Reference publication : E.M. Leroy, P. Rouquet, P. Formenty, S. Souquière, A. Kilbourne, J.M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S. R. Zaki, and P.E. Rollin– Multiple Ebola Virus Transmission Events and Rapid Decline of Central African Wildlife, Science, vol. 303 n° 5655, 16 January 2004

Sophie Nunziati | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2005/fiche231.htm

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>