Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

p53, tumor suppression and aging

02.01.2006


In the January 1 issue of Genes & Development, Dr. Mary Ellen Perry and colleagues validate the p53 inhibitor, Mdm2, as a promising target for cancer therapies.

The p53 tumor suppressor plays a critical role in cancer formation, and many anticancer strategies aim to activate p53 in order to curb tumor formation. Mdm2 is a key inhibitor of p53 and therefore an attractive target to modulate p53 activity in cells. However, conflicting evidence exists regarding whether or not p53-mediated tumor suppression comes at the cost of accelerated aging.

To analyze the effects of reduced Mdm2 levels on tumorigenesis – as well as the potential for unwanted side effects – Dr. Perry’s team used mdm2-hypomorphic mice (that express less Mdm2 protein than normal mice) which have elevated levels of wild-type p53 activity. The researchers found that even a modest decrease (about 20%) in Mdm2 effectively prevents tumor formation and does not lead to premature aging.



Dr. Perry emphasizes that "many people develop cancer at a young age due to increased expression of Mdm2. The possibility that inhibitors of Mdm2 could delay cancer in such people without causing detrimental side effects is bolstered by our demonstration that mice expressing 30-80% the normal level of Mdm2 develop fewer tumors than wild type mice, yet age normally."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>