Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


p53, tumor suppression and aging


In the January 1 issue of Genes & Development, Dr. Mary Ellen Perry and colleagues validate the p53 inhibitor, Mdm2, as a promising target for cancer therapies.

The p53 tumor suppressor plays a critical role in cancer formation, and many anticancer strategies aim to activate p53 in order to curb tumor formation. Mdm2 is a key inhibitor of p53 and therefore an attractive target to modulate p53 activity in cells. However, conflicting evidence exists regarding whether or not p53-mediated tumor suppression comes at the cost of accelerated aging.

To analyze the effects of reduced Mdm2 levels on tumorigenesis – as well as the potential for unwanted side effects – Dr. Perry’s team used mdm2-hypomorphic mice (that express less Mdm2 protein than normal mice) which have elevated levels of wild-type p53 activity. The researchers found that even a modest decrease (about 20%) in Mdm2 effectively prevents tumor formation and does not lead to premature aging.

Dr. Perry emphasizes that "many people develop cancer at a young age due to increased expression of Mdm2. The possibility that inhibitors of Mdm2 could delay cancer in such people without causing detrimental side effects is bolstered by our demonstration that mice expressing 30-80% the normal level of Mdm2 develop fewer tumors than wild type mice, yet age normally."

Heather Cosel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>