Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy for muscular dystrophy fixes frail muscle cells in animal model

28.12.2005


A new gene therapy technique that has shown promise in skin disease and hemophilia might one day be useful for treating muscular dystrophy, according to a new study by researchers at Stanford University School of Medicine.



In the study, scheduled to be published online in the Proceedings of the National Academy of Sciences the week of Jan. 2, the researchers used gene therapy to introduce a healthy copy of the gene dystrophin into mice with a condition that mimics muscular dystrophy. The dystrophin gene is mutated and as a result produces a defective protein in the roughly 20,000 people in the United States with the most common form of the disease.

Using gene therapy to treat muscular dystrophy isn’t a new idea. Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences, said that researchers have tried several different techniques with variable success. One hurdle is getting genes into muscle cells all over the body. Another is convincing those cells to permanently produce the therapeutic protein made by those genes.


The gene therapy technique Rando and postdoctoral fellow Carmen Bertoni, PhD, used was developed by Michele Calos, PhD, associate professor of genetics. One of the main advantages of this method is that it could potentially provide a long-term fix for a variety of genetic diseases, including muscular dystrophy.

In muscular dystrophy, the muscle cells break down and are slowly replaced by fat. Eventually people with the disease are confined to a wheelchair and usually die in their 20s. There is currently no effective treatment for the disease, which explains why gene therapy remains a hope despite the significant hurdles.

Rando said the PNAS paper highlights an additional requirement for any gene therapy to be successful: the introduced gene must produce healthy dystrophin protein in large quantities in order to repair the entire muscle cell. Previous muscular dystrophy gene therapy studies did not look at whether the introduced dystrophin spread along the entire length of the muscle cell, which can be many millimeters long in mice or inches long in humans.

In the upcoming paper Bertoni used a standard gene therapy method to introduce two genes - dystrophin and a gene that makes a glowing protein - into mice with a mouse version of muscular dystrophy. She found that in mice producing insufficient dystrophin, she could see the glowing protein slowly leak out of the cell. This leakiness is a sign that the cell is not healed. In contrast, when she used Calos’ gene therapy technique to introduce the genes, the muscle cell contained high levels of dystrophin distributed along the length of the cell and the glowing protein stayed within the cell, suggesting that the abundant dystrophin repaired the ailing muscle.

"If you have a single cell that’s a foot long and you only correct a few inches, you’ve done very little," Rando said, "Whereas if you correct it from end to end, you truly cure the disease in that cell."

Both Rando and Calos point out that the road to a gene therapy cure for muscular dystrophy is still a long one. However, Calos is confident that her technique will be a part of the journey towards a cure for the disease and for other diseases such as hemophilia and the skin disease, epidermolysis bullosa. Early trials using her approach have looked promising in animal models of both of these diseases.

"I think our approach has a lot of potential to overcome issues that have slowed the field of gene therapy," Calos said.

Calos said her approach has two advantages: one is that in her method the gene gets inserted directly into the cell’s own DNA, which is why the correction is permanent. In some other methods the gene stays outside the DNA and slowly breaks down. The second advantage is that her method doesn’t rely on a virus to disperse the DNA and therefore avoids some of the issues, including cancer and an immune reaction, that have turned up in viral gene therapy trials. Instead this approach uses naked DNA that travels through the bloodstream to cells of the body.

For his part, Rando said that no matter how well gene therapy works in an isolated muscle, researchers still must figure out how to get that gene to muscles throughout the body. Despite the remaining hurdles, both Rando and Calos said that their study is a step towards eventually treating muscular dystrophy and other diseases using gene therapy.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>