Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sickle cell disease corrected in human models using stem cell-based gene therapy

28.12.2005


In a study to be published in the January 2006 issue of Nature Biotechnology, researchers led by a team of scientists at Memorial Sloan-Kettering Cancer Center have devised a novel strategy that uses stem cell-based gene therapy and RNA interference to genetically reverse sickle cell disease (SCD) in human cells. This research is the first to demonstrate a way to genetically correct this debilitating blood disease using RNA interference technology.



To prevent the production of the abnormal hemoglobin that causes sickle cell disease, a viral vector was introduced in cell cultures of patients who have the disease. The vector carried a therapeutic globin gene harboring an embedded small interfering RNA precursor designed to suppress abnormal hemoglobin formation. Tested in adult stem cells from SCD patients, researchers found that the newly formed red blood cells made normal hemoglobin and suppressed production of the sickle shaped hemoglobin typical of the disease.

"Sickle cell disease can only be cured by transplanting healthy blood-forming stem cells from another individual, but this option is not available to most patients due to the difficulty in finding a compatible donor," explained Michel Sadelain, MD, PhD, of the Immunology Program at MSKCC and the study’s senior author. "By using gene transfer, there is always a donor match because the patient’s own stem cells are used to treat the disease."


Sickle cell disease is a genetic condition that causes an abnormal type of hemoglobin to be made in red blood cells. The aggregation of hemoglobin S inside red cells interferes with the body’s blood cells’ ability to flow through small blood vessels, depriving tissues of adequate oxygen supply. This can cause pain, anemia, infections, organ damage, and stroke. Approximately 80,000 people in the United States have this inherited condition, which is primarily found in people of African, Mediterranean, Indian, or Middle Eastern origin. There is no known cure other than stem cell transplantation.

To treat SCD, Sloan-Kettering scientists devised a novel engineering strategy combining RNA interference with globin gene transfer by creating a therapeutic transgene, consisting of the gamma-globin gene and small interfering RNA specific for beta S-globin, the globin mutant chain that causes sickle cell disease.

"An innovative and sophisticated approach was needed to genetically engineer hematopoietic stem cells using a practical and clinically applicable process. The transferred gene must not disrupt the cells’ normal functions," explained Isabelle Riviere, PhD, Co-Director of the Gene Transfer and Somatic Cell Engineering Facility and a study co-author.

The new gene had two functions -- produce normal hemoglobin and suppress the generation of sickle shaped hemoglobin S. The therapeutic gene was engineered into a lentiviral vector and introduced into hematopoietic stem cells. After the cells received the treatment, they made normal hemoglobin.

"This proved our hypothesis that you can simultaneously add one function and delete another in the same cell and obtain synergistic genetic modifications within a single cell," said Selda Samakoglu, PhD, a member of Dr. Sadelain’s laboratory and the study’s first author. "In this case, we used the technique to correct sickle cell disease, but it should be broadly applicable to use therapeutically in stem cells or malignant cells."

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>