Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sickle cell disease corrected in human models using stem cell-based gene therapy

28.12.2005


In a study to be published in the January 2006 issue of Nature Biotechnology, researchers led by a team of scientists at Memorial Sloan-Kettering Cancer Center have devised a novel strategy that uses stem cell-based gene therapy and RNA interference to genetically reverse sickle cell disease (SCD) in human cells. This research is the first to demonstrate a way to genetically correct this debilitating blood disease using RNA interference technology.



To prevent the production of the abnormal hemoglobin that causes sickle cell disease, a viral vector was introduced in cell cultures of patients who have the disease. The vector carried a therapeutic globin gene harboring an embedded small interfering RNA precursor designed to suppress abnormal hemoglobin formation. Tested in adult stem cells from SCD patients, researchers found that the newly formed red blood cells made normal hemoglobin and suppressed production of the sickle shaped hemoglobin typical of the disease.

"Sickle cell disease can only be cured by transplanting healthy blood-forming stem cells from another individual, but this option is not available to most patients due to the difficulty in finding a compatible donor," explained Michel Sadelain, MD, PhD, of the Immunology Program at MSKCC and the study’s senior author. "By using gene transfer, there is always a donor match because the patient’s own stem cells are used to treat the disease."


Sickle cell disease is a genetic condition that causes an abnormal type of hemoglobin to be made in red blood cells. The aggregation of hemoglobin S inside red cells interferes with the body’s blood cells’ ability to flow through small blood vessels, depriving tissues of adequate oxygen supply. This can cause pain, anemia, infections, organ damage, and stroke. Approximately 80,000 people in the United States have this inherited condition, which is primarily found in people of African, Mediterranean, Indian, or Middle Eastern origin. There is no known cure other than stem cell transplantation.

To treat SCD, Sloan-Kettering scientists devised a novel engineering strategy combining RNA interference with globin gene transfer by creating a therapeutic transgene, consisting of the gamma-globin gene and small interfering RNA specific for beta S-globin, the globin mutant chain that causes sickle cell disease.

"An innovative and sophisticated approach was needed to genetically engineer hematopoietic stem cells using a practical and clinically applicable process. The transferred gene must not disrupt the cells’ normal functions," explained Isabelle Riviere, PhD, Co-Director of the Gene Transfer and Somatic Cell Engineering Facility and a study co-author.

The new gene had two functions -- produce normal hemoglobin and suppress the generation of sickle shaped hemoglobin S. The therapeutic gene was engineered into a lentiviral vector and introduced into hematopoietic stem cells. After the cells received the treatment, they made normal hemoglobin.

"This proved our hypothesis that you can simultaneously add one function and delete another in the same cell and obtain synergistic genetic modifications within a single cell," said Selda Samakoglu, PhD, a member of Dr. Sadelain’s laboratory and the study’s first author. "In this case, we used the technique to correct sickle cell disease, but it should be broadly applicable to use therapeutically in stem cells or malignant cells."

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>