Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for Epstein-Barr virus protein’s role in blood cancers discovered

27.12.2005


Implications for new therapeutic targets for B cell lymphomas and other EBV-associated illnesses



Earlier this year, researchers at the University of Pennsylvania School of Medicine identified a link between a critical cancer pathway and an Epstein-Barr Virus (EBV) protein known to be expressed in a number of EBV-associated cancers. Their findings demonstrated a new mechanism by which EBV can transform human B cells from the immune system into cancerous cells, which can lead to B-cell lymphomas. Now, they have found that the viral protein--called EBNA3C (for EBV nuclear antigen)--mediates the degradation of the retinoblastoma protein, an important molecular brake for cell proliferation.
Erle S. Robertson, PhD, an Associate Professor of Microbiology who leads the Tumor Virology Program at Penn’s Abramson Cancer Center, and MD/PhD student Jason Knight, published their results last week in the Proceedings of the National Academy of Sciences.

The retinoblastoma protein (Rb) is a major regulator of several genes in charge of cell proliferation and cell-cycle regulation. In the nucleus, Rb normally binds to E2F, turning off genes involved with cell proliferation. Using human cell cultures infected with the Epstein-Barr virus, the investigators found that EBNA3C recruits a group of molecules called the SCF complex, which attaches ubiquitin to Rb. This inadvertently tags Rb for degradation by the proteosome machinery, the cell’s recycling plant. With Rb out of the way, the cell now reproduces uncontrollably.



"It’s as simple as that, but it’s a major mystery solved that many researchers have been working on for at least 15 years," says Robertson.

EBV, a member of the herpesvirus family and one of the most common human viruses, plays a role in cancers such as lymphoproliferative diseases in transplant or AIDS patients, Burkitt’s lymphoma, Hodgkin’s lymphoma, and nasopharyngeal carcinoma, and also causes the well-known disease infectious mononucleosis. As many as 95 percent of adults 20 years and older have been infected with EBV, but show no symptoms.

Now, the researchers are in the process of blocking the molecular signals caused by EBNA3C’s presence in B cells. This points the way to a possible drug for EBV-related cancers. "Stopping this step in the life cycle of EBV could be a major potential target for the development of therapeutics for treating EBV-related B cell lymphomas," says Robertson. "This is especially important because a large percentage of patients are non-responsive to the current frontline drug for treating B cell lymphoma, a CD20 monoclonal antibody." The researchers surmise that the first use of future therapies from these studies could be in lymphoproliferative disease in transplant and immunocompromised patients.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>