Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male elephants woo females with precise chemistry

23.12.2005


OHSU, New Zealand study says exact molecular mixture in male-emitted pheromone during musth period dictates other elephants’ interest



The exact chemical blend of a pheromone emitted by older male elephants in musth influences both a female elephant’s interest in mating and how other surrounding elephants behave, a new study has found.

The researchers at Oregon Health & Science University and the University of Auckland in New Zealand say the release of a specific proportion of two mirror images of the pheromone, frontalin, depends on whether the male elephant is mature enough and has reached a particular stage of musth, an annual period of sexual activity and increased aggression.


"This study reveals the precision and specificity of inter-animal signaling possible," co-author L.E.L. "Bets" Rasmussen, Ph.D., research professor of environmental and biomolecular systems, OHSU OGI School of Science & Engineering, said of the study published in the Dec. 22 edition of the journal Nature. "This is the first example, in mammals, of the use of this very precise signaling and ratio of enantiomers in signaling."

An enantiomer is one of a pair of chemical compounds whose molecular structures are mirror images of each other. Frontalin, a pheromone discharged during musth by male Asian elephants from a temporal gland located between the eye and ear, comes in two forms, each representing one half of the enantiomer pair and identified as either "plus" or "minus."

The OHSU and New Zealand team showed that the enantiomers of frontalin are released in the elephants in specific ratios that depend on the animal’s age and stage of its musth. They also found that alterations in those ratios elicit different responses in not only female elephants, but also other male elephants near the male emitting the pheromone.

"We were certainly quite surprised" by the results, said the study’s lead author, David R. Greenwood, Ph.D., associate professor in the School of Biological Sciences at the University of Auckland and scientist with the Molecular Olfaction Group at HortResearch in New Zealand.

Scientists have assumed that only one form of frontalin would be made by elephants, but by merely changing the ratios of frontalin’s enantiomer composition, "you’re actually changing the message signals, and you end up having a signal that is essentially different," Greenwood added. "It’s not just a single message."

The research team analyzed secretion samples from six male elephants and found that the pheromone is first detectable in the late teens, with the quantity secreted rising about 15-fold over a 25-year life span. Young males secreted significantly more of the "plus" frontalin than "minus," but the ratios became almost equal as the elephant matured, especially between ages 31 and 43.

Musth periods get longer as the males age, according to the study, and, importantly, the enantiomeric composition of the frontalin secreted is almost equal in the middle part of a musth episode, a period of prime signaling by male elephants. In contrast, at the end of the physiologically exhausting musth episode, the ratio becomes more varied so that at the end of musth, the ratio is askewed toward the minus enantiomer, allowing other males and females to detect the ending of musth.

The team then tested the effect the various enantiomer ratios had on the elephants. They examined ovulating or "follicular" females, and females that were either pregnant or in a non-reproductive "luteal" phase. They also tested young and old males. It found that low concentrations of frontalin, represented when the enantiomer ratio is more "plus" than "minus," was of mild interest to both young and old males, but when the ratio became balanced - equal amounts of plus and minus frontalin - males of all ages, as well as luteal-phase and pregnant females, were repulsed. Only ovulating females were attracted.

The study’s results indicate that the ratio of frontalin enantiomers allows other elephants to distinguish both the maturity of male elephants in musth and the phase of musth.

The researchers hope to use the study’s results to "tease apart the entire route of how pheromones move" from the source elephant to the recipient. They already have been studying the other end of that route - the proteins in the elephants’ olfactory systems that receive the signals sent by the source.

"We’re interested in where the frontalin is bound to the proteins in the various olfactory mucous milieus and transferred to the vomeronasal organ, where it’s sensed as a pheromone," Greenwood said. "We’re promoting the elephant as a good olfactory model because their olfactory systems are enormous and separated in space. This is combined with its easily observable and countable olfactory responses involving its trunk. We can’t do this in any other mammalian species."

Rasmussen added: "All of these responses and resultant behaviors are measurable in time. Not milliseconds, but seconds. We have a repertoire of follow-up behavior, such as trumpeting, running away and circling, that also can be counted and scored. Such information is translatable at the basic level to other animals," including humans.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>