Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial protein mimics host to cripple defenses

23.12.2005


Like a wolf in sheep’s clothing, a protein from a disease-causing bacterium slips into plant cells and imitates a key host protein in order to cripple the plant’s defenses. This discovery, reported in this week’s Science Express by researchers at the Boyce Thompson Institute (BTI) for Plant Research, advances the understanding of a disease mechanism common to plants, animals, and people.



That mechanism, called programmed cell death (PCD), causes a cell to commit suicide. PCD helps organisms contain infections, nip potential cancers in the bud, and get rid of old or unneeded cells. However, runaway PCD leads to everything from unseemly spots on tomatoes to Parkinson’s and Alzheimer’s diseases.

BTI Scientist and Cornell University Professor of Plant Pathology Gregory Martin studies the interaction of Pseudomonas syringae bacteria with plants to find what determines whether a host succumbs to disease. Martin and graduate student Robert Abramovitch previously found that AvrPtoB, a protein Pseudomonas injects into plants, disables PCD in a variety of susceptible plants and in yeast (a single-celled ancestor of both plants and animals). Abramovitch and Martin compared AvrPtoB’s amino acid sequence to known proteins in other microbes and in higher organisms, but found no matches that might hint at how the protein works at the molecular level.


"We had some biochemical clues to what AvrPtoB was doing, but getting the three-dimensional crystal structure was really key," Martin explained. To find that structure, Martin and Abramovitch worked with collaborators at Rockefeller University. The structure of AvrPtoB revealed that the protein looks very much like a ubiquitin ligase, an enzyme plant and animal cells use to attach the small protein ubiquitin to unneeded or defective proteins. Other enzymes then chew up and "recycle" the ubiquitin-tagged proteins.

To confirm that AvrPtoB was a molecular mimic, Martin and Abramovitch altered parts of the protein that correspond to crucial sites on ubiquitin ligase. These changes rendered Pseudomonas harmless to susceptible tomato plants, and made the purified protein inactive. AvrPtoB’s function is remarkable not only because its amino acid sequence is so different from other ubiquitin ligases, but also because bacteria don’t use ubiquitin to recycle their own proteins.

"An interesting question is where this protein came from," Martin noted. "Did the bacteria steal it from a host and modify it over time, or did it evolve independently? We don’t know."

Regardless, the discovery "helps us understand how organisms regulate cell death on a fundamental level," Martin said. AvrPtoB provides a sophisticated tool researchers can use to knock out PCD brought on by a variety of conditions, shedding light on immunity. The protein itself or a derivative might one day be applied to control disease in crops or in people. For now, Martin and Abramovitch are working to find which proteins AvrPtoB acts on, and what role those proteins play in host PCD.

Shawna Williams | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>