Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial protein mimics host to cripple defenses

23.12.2005


Like a wolf in sheep’s clothing, a protein from a disease-causing bacterium slips into plant cells and imitates a key host protein in order to cripple the plant’s defenses. This discovery, reported in this week’s Science Express by researchers at the Boyce Thompson Institute (BTI) for Plant Research, advances the understanding of a disease mechanism common to plants, animals, and people.



That mechanism, called programmed cell death (PCD), causes a cell to commit suicide. PCD helps organisms contain infections, nip potential cancers in the bud, and get rid of old or unneeded cells. However, runaway PCD leads to everything from unseemly spots on tomatoes to Parkinson’s and Alzheimer’s diseases.

BTI Scientist and Cornell University Professor of Plant Pathology Gregory Martin studies the interaction of Pseudomonas syringae bacteria with plants to find what determines whether a host succumbs to disease. Martin and graduate student Robert Abramovitch previously found that AvrPtoB, a protein Pseudomonas injects into plants, disables PCD in a variety of susceptible plants and in yeast (a single-celled ancestor of both plants and animals). Abramovitch and Martin compared AvrPtoB’s amino acid sequence to known proteins in other microbes and in higher organisms, but found no matches that might hint at how the protein works at the molecular level.


"We had some biochemical clues to what AvrPtoB was doing, but getting the three-dimensional crystal structure was really key," Martin explained. To find that structure, Martin and Abramovitch worked with collaborators at Rockefeller University. The structure of AvrPtoB revealed that the protein looks very much like a ubiquitin ligase, an enzyme plant and animal cells use to attach the small protein ubiquitin to unneeded or defective proteins. Other enzymes then chew up and "recycle" the ubiquitin-tagged proteins.

To confirm that AvrPtoB was a molecular mimic, Martin and Abramovitch altered parts of the protein that correspond to crucial sites on ubiquitin ligase. These changes rendered Pseudomonas harmless to susceptible tomato plants, and made the purified protein inactive. AvrPtoB’s function is remarkable not only because its amino acid sequence is so different from other ubiquitin ligases, but also because bacteria don’t use ubiquitin to recycle their own proteins.

"An interesting question is where this protein came from," Martin noted. "Did the bacteria steal it from a host and modify it over time, or did it evolve independently? We don’t know."

Regardless, the discovery "helps us understand how organisms regulate cell death on a fundamental level," Martin said. AvrPtoB provides a sophisticated tool researchers can use to knock out PCD brought on by a variety of conditions, shedding light on immunity. The protein itself or a derivative might one day be applied to control disease in crops or in people. For now, Martin and Abramovitch are working to find which proteins AvrPtoB acts on, and what role those proteins play in host PCD.

Shawna Williams | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>