Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanochemical technology: a new field for Delft’s chemists

23.12.2005


The chemical engineers at Delft University of Technology are entering the new discipline of nanochemical technology. Building upon their solid background in chemical and process engineering, they want to build a bridge between the new fundamental concepts involved in nanotechnology and the process technology needed to turn them into practical applications. A recruitment campaign for three new academic chairs begins this week in Dutch and international journals.



Until now, Delft has concentrated mainly upon bulk chemical technology. Nanoscale products have attracted only limited attention. But that is going to change, says Peter Appel, Head of the Department of Chemical Technology (Delft ChemTech). “We want to widen our focus to include nanochemical technology,” he explains. “Around the world, this is regarded as the next phase in the development of chemical technology as a discipline. It is also an excellent match for other activities here in Delft, such as those of the Kavli Institute of Nanoscience.”

From molecule to product


To take Chemical Technology in this new direction, the university is creating three academic chairs complete with infrastructure. They are in Supramolecular Chemistry, Self-Assembling Systems and Process & Product Engineering. As a result, the department will cover the entire production chain – a focus encapsulated in the slogan ‘from molecule to product’. Nanoscale molecules and structures are at the heart of the production processes. The research is fundamental in nature, but driven by practical applications.

Chemical Technology’s new course represents an expansion and a reinforcement of process engineering at Delft. The university’s activities in this field are now anchored in more than ten academic chairs spread across four departments and two faculties.

Nano

The prefix ‘nano’ refers to things happening at the level of a millionth of a millimetre: the nanometre. This is the world of atoms and molecules. The technological progress of recent years has finally made it possible to study particles and create structures at this level. Many of the properties of materials are determined at the nanoscale. So the nanosciences make up a promising branch of modern research, with potential applications in every conceivable field – from medical techniques to revolutionary materials. Whereas advances were mainly confined to demonstrations of spectacular theories until the recent past, we are now on the threshold of useful applications in the public domain. According to the Department of Chemical Technology, nanochemical technology has an important part to play in this.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>