Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanochemical technology: a new field for Delft’s chemists

23.12.2005


The chemical engineers at Delft University of Technology are entering the new discipline of nanochemical technology. Building upon their solid background in chemical and process engineering, they want to build a bridge between the new fundamental concepts involved in nanotechnology and the process technology needed to turn them into practical applications. A recruitment campaign for three new academic chairs begins this week in Dutch and international journals.



Until now, Delft has concentrated mainly upon bulk chemical technology. Nanoscale products have attracted only limited attention. But that is going to change, says Peter Appel, Head of the Department of Chemical Technology (Delft ChemTech). “We want to widen our focus to include nanochemical technology,” he explains. “Around the world, this is regarded as the next phase in the development of chemical technology as a discipline. It is also an excellent match for other activities here in Delft, such as those of the Kavli Institute of Nanoscience.”

From molecule to product


To take Chemical Technology in this new direction, the university is creating three academic chairs complete with infrastructure. They are in Supramolecular Chemistry, Self-Assembling Systems and Process & Product Engineering. As a result, the department will cover the entire production chain – a focus encapsulated in the slogan ‘from molecule to product’. Nanoscale molecules and structures are at the heart of the production processes. The research is fundamental in nature, but driven by practical applications.

Chemical Technology’s new course represents an expansion and a reinforcement of process engineering at Delft. The university’s activities in this field are now anchored in more than ten academic chairs spread across four departments and two faculties.

Nano

The prefix ‘nano’ refers to things happening at the level of a millionth of a millimetre: the nanometre. This is the world of atoms and molecules. The technological progress of recent years has finally made it possible to study particles and create structures at this level. Many of the properties of materials are determined at the nanoscale. So the nanosciences make up a promising branch of modern research, with potential applications in every conceivable field – from medical techniques to revolutionary materials. Whereas advances were mainly confined to demonstrations of spectacular theories until the recent past, we are now on the threshold of useful applications in the public domain. According to the Department of Chemical Technology, nanochemical technology has an important part to play in this.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>