Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanochemical technology: a new field for Delft’s chemists

23.12.2005


The chemical engineers at Delft University of Technology are entering the new discipline of nanochemical technology. Building upon their solid background in chemical and process engineering, they want to build a bridge between the new fundamental concepts involved in nanotechnology and the process technology needed to turn them into practical applications. A recruitment campaign for three new academic chairs begins this week in Dutch and international journals.



Until now, Delft has concentrated mainly upon bulk chemical technology. Nanoscale products have attracted only limited attention. But that is going to change, says Peter Appel, Head of the Department of Chemical Technology (Delft ChemTech). “We want to widen our focus to include nanochemical technology,” he explains. “Around the world, this is regarded as the next phase in the development of chemical technology as a discipline. It is also an excellent match for other activities here in Delft, such as those of the Kavli Institute of Nanoscience.”

From molecule to product


To take Chemical Technology in this new direction, the university is creating three academic chairs complete with infrastructure. They are in Supramolecular Chemistry, Self-Assembling Systems and Process & Product Engineering. As a result, the department will cover the entire production chain – a focus encapsulated in the slogan ‘from molecule to product’. Nanoscale molecules and structures are at the heart of the production processes. The research is fundamental in nature, but driven by practical applications.

Chemical Technology’s new course represents an expansion and a reinforcement of process engineering at Delft. The university’s activities in this field are now anchored in more than ten academic chairs spread across four departments and two faculties.

Nano

The prefix ‘nano’ refers to things happening at the level of a millionth of a millimetre: the nanometre. This is the world of atoms and molecules. The technological progress of recent years has finally made it possible to study particles and create structures at this level. Many of the properties of materials are determined at the nanoscale. So the nanosciences make up a promising branch of modern research, with potential applications in every conceivable field – from medical techniques to revolutionary materials. Whereas advances were mainly confined to demonstrations of spectacular theories until the recent past, we are now on the threshold of useful applications in the public domain. According to the Department of Chemical Technology, nanochemical technology has an important part to play in this.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>