Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the mold: Research teams sequence three fungus genomes

22.12.2005


From garden compost to forest greenery, the mold Aspergillus fumigatus lurks across much of the world. And so does its impact. The most common mold causing infection, A. fumigatus triggers allergic reactions, asthma attacks--and even deadly infections among people with weakened immune systems.



Now, in the December 22 issue of the journal Nature, scientists at The Institute for Genomic Research (TIGR) and their collaborators report the mold’s sequenced genome. The genome could lead researchers to A. fumigatus genes with the potential to generate better diagnostics and treatment for fungal infection. "This genome sequence is going to be central for developing tools for effectively managing A. fumigatus infections as they become more prevalent in the aging population," predicts first author William Nierman, a microbiologist at TIGR.

Nierman co-authored two additional Aspergillus genome papers in the same issue of Nature. One describes a genome project on Aspergillus oryzae, a nonpathogenic food industry workhorse that has produced sake (rice wine), miso (soybean paste), and shoyu (soy sauce) for 2,000 years. The third paper reports the genome sequence of model organism Aspergillus nidulans and compares the organism to A. oryzae and A. fumigatus. The work was carried out collaboratively at several institutions in the U.S., U.K., Spain, Japan, France, Brazil, Austria, Switzerland, and Germany. David Denning of the University of Manchester coordinated the projects.


Unlike most fungi, A. fumigatus likes it hot--and hotter. The fungus enjoys an unusual range of temperatures. At home in the compost heap, A. fumigatus tolerates temperatures up to 70 degrees Celsius. The fungus becomes a human pathogen because it’s perfectly comfortable at body temperature, 37 degrees C. Altering ambient temperatures in the lab, TIGR scientists tracked gene activity, documenting different A. fumigatus genes that turned on and off, as the environment warmed.

The A. fumigatus genome is 28 Mb in size, consisting of 8 chromosomes bearing a total of almost 10,000 genes. Which genes make the mold virulent? Some 700 A. fumigatus genes significantly differ--or do not even occur--in a similar, yet less infectious fungus, Neosartorya fischeri. Nierman and colleagues are now searching these unique genes for clues to A. fumigatus infectivity.

It’s a complex task. Suspect genes encode proteins involved in central metabolic pathways, cell signaling, cell wall biosynthesis, pigment biosynthesis, and secondary metabolite production. In other words, A. fumigatus’s virulence genes are likely complex and mixed up with normal metabolic capabilities, Nierman says. He and his colleagues now plan to systematically "knock out," or disable, genes that might make A. fumigatus infectious. Eventually, Nierman adds, this work could lead to better therapies for serious asthma, allergy, and other conditions.

Kathryn Brown | EurekAlert!

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>