Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key that opens cells to the deadly malaria parasite

22.12.2005


Researchers at the International Centre for Genetic Engineering and Biotechnology (ICGEB) in India and a unit of the European Molecular Biology Laboratory (EMBL) in France have made a key discovery about a molecule that helps the malaria parasite infect human cells. India is one of the countries most affected by this disease, which has infected 300 million people across the world and leads to over one million fatalities per year. The breakthrough, which was achieved at the European Synchrotron Radiation Facility (ESRF) in Grenoble, may represent an important step towards finding new therapies. The study appears in this week’s online edition of Nature (December 21).



Malaria is caused by a one-celled organism called Plasmodium, which is passed to humans through the bite of Anopheles mosquitoes. The parasite replicates inside red blood cells, which eventually burst. In order to enter these cells, it first has to bind to the cell through interactions of proteins on the surfaces of red blood cells and the parasite.

The new study reveals key features of a protein on the surface of Plasmodium that permits it to bind. The researchers obtained crystals of a module of this protein, called the Duffy-Binding Like (DBL) domain, which directly interacts with a "receptor" protein on red blood cells. Then they examined the crystals using very powerful X-rays of the UK-Medical Research Council Beamline BM14 at the European Synchrotron Radiation Facility (ESRF) in Grenoble. X-ray crystallography is one of the only methods available to create atom-by-atom maps of proteins, which are too small to be seen by microscopes.


"Until now we have not had a close-up view of the precise surface where the two proteins interact," explains Amit Sharma, the corresponding author of the paper. "That surface is absolutely crucial in permitting the parasite to enter the cell. If we can determine its features in atomic detail, we may be able to find weak points that could make good targets for drugs."

In addition to interfering with the binding process, such drugs would also have to be specific: in other words, they shouldn’t interfere with normal processes in red blood cells. The receptor protein that allows Plasmodium to enter undoubtedly has other important functions. "What we’ve found is that the DBL has an absolutely unique architecture, which means that there should be a way to inhibit its activity without affecting healthy blood cells," says Hassan Belrhali, an EMBL researcher who participated in the project.

Evolution has produced many different species of Plasmodium. This work was carried out using a form of the parasite that doesn’t normally infect humans, but DBL modules are similar in different forms of the organism. This makes it likely that the findings can be extended to other types of Plasmodium. "Our results provide a structural framework by which to understand the DBLs of most malaria parasites, and could have an impact in the design of drugs to fight against this illness," explains Amit Sharma.

The researchers are also investigating molecules important at an earlier phase of malaria infections, when parasites invade the liver.

Anna-Lynn Wegener | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>