Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key that opens cells to the deadly malaria parasite

22.12.2005


Researchers at the International Centre for Genetic Engineering and Biotechnology (ICGEB) in India and a unit of the European Molecular Biology Laboratory (EMBL) in France have made a key discovery about a molecule that helps the malaria parasite infect human cells. India is one of the countries most affected by this disease, which has infected 300 million people across the world and leads to over one million fatalities per year. The breakthrough, which was achieved at the European Synchrotron Radiation Facility (ESRF) in Grenoble, may represent an important step towards finding new therapies. The study appears in this week’s online edition of Nature (December 21).



Malaria is caused by a one-celled organism called Plasmodium, which is passed to humans through the bite of Anopheles mosquitoes. The parasite replicates inside red blood cells, which eventually burst. In order to enter these cells, it first has to bind to the cell through interactions of proteins on the surfaces of red blood cells and the parasite.

The new study reveals key features of a protein on the surface of Plasmodium that permits it to bind. The researchers obtained crystals of a module of this protein, called the Duffy-Binding Like (DBL) domain, which directly interacts with a "receptor" protein on red blood cells. Then they examined the crystals using very powerful X-rays of the UK-Medical Research Council Beamline BM14 at the European Synchrotron Radiation Facility (ESRF) in Grenoble. X-ray crystallography is one of the only methods available to create atom-by-atom maps of proteins, which are too small to be seen by microscopes.


"Until now we have not had a close-up view of the precise surface where the two proteins interact," explains Amit Sharma, the corresponding author of the paper. "That surface is absolutely crucial in permitting the parasite to enter the cell. If we can determine its features in atomic detail, we may be able to find weak points that could make good targets for drugs."

In addition to interfering with the binding process, such drugs would also have to be specific: in other words, they shouldn’t interfere with normal processes in red blood cells. The receptor protein that allows Plasmodium to enter undoubtedly has other important functions. "What we’ve found is that the DBL has an absolutely unique architecture, which means that there should be a way to inhibit its activity without affecting healthy blood cells," says Hassan Belrhali, an EMBL researcher who participated in the project.

Evolution has produced many different species of Plasmodium. This work was carried out using a form of the parasite that doesn’t normally infect humans, but DBL modules are similar in different forms of the organism. This makes it likely that the findings can be extended to other types of Plasmodium. "Our results provide a structural framework by which to understand the DBLs of most malaria parasites, and could have an impact in the design of drugs to fight against this illness," explains Amit Sharma.

The researchers are also investigating molecules important at an earlier phase of malaria infections, when parasites invade the liver.

Anna-Lynn Wegener | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>