Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key that opens cells to the deadly malaria parasite

22.12.2005


Researchers at the International Centre for Genetic Engineering and Biotechnology (ICGEB) in India and a unit of the European Molecular Biology Laboratory (EMBL) in France have made a key discovery about a molecule that helps the malaria parasite infect human cells. India is one of the countries most affected by this disease, which has infected 300 million people across the world and leads to over one million fatalities per year. The breakthrough, which was achieved at the European Synchrotron Radiation Facility (ESRF) in Grenoble, may represent an important step towards finding new therapies. The study appears in this week’s online edition of Nature (December 21).



Malaria is caused by a one-celled organism called Plasmodium, which is passed to humans through the bite of Anopheles mosquitoes. The parasite replicates inside red blood cells, which eventually burst. In order to enter these cells, it first has to bind to the cell through interactions of proteins on the surfaces of red blood cells and the parasite.

The new study reveals key features of a protein on the surface of Plasmodium that permits it to bind. The researchers obtained crystals of a module of this protein, called the Duffy-Binding Like (DBL) domain, which directly interacts with a "receptor" protein on red blood cells. Then they examined the crystals using very powerful X-rays of the UK-Medical Research Council Beamline BM14 at the European Synchrotron Radiation Facility (ESRF) in Grenoble. X-ray crystallography is one of the only methods available to create atom-by-atom maps of proteins, which are too small to be seen by microscopes.


"Until now we have not had a close-up view of the precise surface where the two proteins interact," explains Amit Sharma, the corresponding author of the paper. "That surface is absolutely crucial in permitting the parasite to enter the cell. If we can determine its features in atomic detail, we may be able to find weak points that could make good targets for drugs."

In addition to interfering with the binding process, such drugs would also have to be specific: in other words, they shouldn’t interfere with normal processes in red blood cells. The receptor protein that allows Plasmodium to enter undoubtedly has other important functions. "What we’ve found is that the DBL has an absolutely unique architecture, which means that there should be a way to inhibit its activity without affecting healthy blood cells," says Hassan Belrhali, an EMBL researcher who participated in the project.

Evolution has produced many different species of Plasmodium. This work was carried out using a form of the parasite that doesn’t normally infect humans, but DBL modules are similar in different forms of the organism. This makes it likely that the findings can be extended to other types of Plasmodium. "Our results provide a structural framework by which to understand the DBLs of most malaria parasites, and could have an impact in the design of drugs to fight against this illness," explains Amit Sharma.

The researchers are also investigating molecules important at an earlier phase of malaria infections, when parasites invade the liver.

Anna-Lynn Wegener | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>