Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hodgkin lymphoma: A unique example for tumor cell reprogramming

22.12.2005


Researchers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch (Germany) and the Charité University Medicine Berlin (Campus Virchow and Campus Buch) have discovered a molecular mechanism which explains why the cells of Hodgkin lymphoma, a malignancy affecting the lymph nodes, can change their appearance and take on characteristics of other cell lineages. "This is a perfect example of the ability of the B cells, a specific type of human immune cells affected by Hodgkin lymphoma, to be able to modify their differentiation program", say Dr. Stephan Mathas and Dr. Martin Janz from Professor Bernd Dörken’s group at the MDC and the Charité. Their findings have now been published online in advance in Nature Immunology (doi:10.1038/ni1285, 2005)*. Their data also make it clear why it has been so difficult to find out which cells in the body are affected by the disease which was first described in the literature in 1832 by the English physician and pathologist Thomas Hodgkin. Not until 1994, 160 years after he had initially described the disease, scientists had found out that it originates in the B cells, specific white blood cells of the immune system. Now, the data of the Berlin research group also help to understand the process of normal and malignant B cell development.



The various white blood cells, as well as the red blood cells and the blood platelets, develop from blood stem cells in the bone marrow, orchestrated by different molecular switches called transcription factors. They tell the cells which direction "to go". Until now, it has been assumed that once human blood cells have developed into one direction they are no longer able to leave their path. However, experiments in mice have shown that mature B cells have the ability to do exactly this: reprogramming and developing into different cell lineages. Until now, it was unclear whether human blood cells can undergo similar processes.

Now, Dr. Mathas and Dr. Janz were able to show that in Hodgkin Reed Sternberg cells, which originate from B cells, the program which steers the differentiation of B cells is defect. One of the central regulators of B cell development, called E2A, is blocked by two antagonists, known as Id2 and ABF-1. Following inhibition of E2A, B cell characteristics are lost and genes for markers of other immune cells, such as macrophages and T cells, which are not characteristic for B cells, are upregulated. Thus, the B cells have changed their appearance. These findings shed light on the extraordinary appearance of Hodgkin Reed Sternberg lymphoma cells.


* Intrinsic inhibition of E2A by ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma

Stephan Mathas1,2*, Martin Janz1,2*, Franziska Hummel2, Michael Hummel3, Brigitte Wollert-Wulf2, Simone Lusatis2 , Ioannis Anagnosto-poulos3, Andreas Lietz2, Mikael Sigvardsson4, Franziska Jundt1,2, Korinna Jöhrens3, Kurt Bommert2, Harald Stein3 and Bernd Dörken1,2

1Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Str. 10, 13125 Berlin; 2Hematology, Oncology and Tumorimmunology, Charite, Medical University Berlin, Campus Virchow-Klinikum, Campus Berlin-Buch, Augustenburger Platz 1, 13353 Berlin; 3Institute for Pathology, Charite, Medical University Berlin, Campus Benjamin Franklin, 12200 Berlin; 4Department for Hematopoietic Stemcell Biology, Stemcell Center, Lund University, S221 84 Lund, Sweden

*These authors contributed equally to this work
Press and Public Affairs
Max Delbrück Center for Molecular Medicine(MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str. 10
13125 Berlin
Phone: +49/30/9406-38 96
Fax.: +49/30/9406-38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>