Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplanted stem cells show promise for mending broken hearts

21.12.2005


Working with heart attack-stricken mice, a team of University of Wisconsin-Madison scientists has shown that embryonic stem cells may one day live up to their clinical promise.



In a paper to be published in the January 2006 issue of the Journal of Molecular and Cellular Cardiology, a team led by UW-Madison stem cell researcher and heart specialist Timothy J. Kamp reports that all-purpose embryonic stem cells, transplanted into mouse hearts damaged by experimentally induced heart attacks, shift gears and morph into functional forms of the major types of cells that compose the healthy heart.

The study’s results are important because they demonstrate that blank-slate embryonic stem cells can be introduced to damaged heart tissue, develop into heart muscle and into cells that form the heart’s blood vessels. If perfected, such therapy could provide a practical, less-invasive alternative to current therapies such as surgery, improve the quality of life for many patients and reduce the number of deaths attributed to heart disease, now estimated at about 700,000 deaths per year in the United States.


"Typically, when that heart muscle dies (as the result of heart attack), it is gone for good," says Kamp, a professor of medicine and physiology in the UW-Madison School of Medicine and Public Health.

In their experiments, when stem cells were introduced directly to tissue damaged by a heart attack, three critical types of cells formed: cardiomyocytes or heart muscle; vascular smooth muscle, the muscle that forms the bulk of the walls of blood vessels; and endothelial cells, the flat cells that line the interior surfaces of blood vessels in the heart and throughout the body’s circulatory system.

"There are multiple components," Kamp explains. "But (in these experiments) we see the three most important types of cells forming. It didn’t completely repair the heart, but it was encouraging."

Kamp emphasized that although results of the new study show promise for using stem cells to repair diseased and damaged tissue, clinical application remains a distant hope. Further studies in mice, primates and, ultimately, humans will be required to ensure efficacy and safety.

Composed mostly of muscle, the heart drives the circulatory system. When it is damaged by a heart attack, scar tissue forms and the heart struggles to do its job of pumping blood throughout the body. With enough tissue damage, congestive heart failure - often leading to death - can occur.

The new experiments were aimed at answering critical questions relative to repairing hearts that have been damaged by heart attacks: Would the cells be driven to repair the heart at the site of the injury, and what kinds of cells would they become?

The group’s finding showed that the cells did indeed migrate to the site of the injury and developed into the critical cell types. Perhaps most importantly, the transplanted cells improved the function of the damaged heart.

"The heart ballooned out less, and its ability to contract improved," Kamp says. "The transplanted cells seemed to respond to the area of active injury. There is something about the injury that favors engraftment and incorporation of those cells."

One intriguing result of the new study is that the implanted cells did not result in tumor formation, one of the primary safety concerns for stem cell therapy. Like cancer cells, embryonic stem cells have a capacity to reproduce indefinitely and scientists must perfect cell transplant methods that are safe before the therapy can be attempted in human patients.

Kamp says future studies will explore ways to refine the cell types used in treating heart disease to enhance safety. His group also plans to implant human cells in mice and non-human primates to further assess the viability of cell transplant therapy and issues of safety.

Timothy J. Kamp | EurekAlert!
Further information:
http://www.medicine.wisc.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>