Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers provide study of early heart development and underlying cause of congenital heart defects

21.12.2005


Studies in drosophila genetics inform development of human heart



Researchers at The Burnham Institute for Medical Research have provided detailed insights into the early formation of the heart. A team lead by Dr. Rolf Bodmer found that two proteins, called Robo and Slit, are required for normal development of the heart and that malfunction of either of these proteins severely impacts the heart’s structure, resulting in congenital heart defects. These findings were published in the journal Current Biology released on December 20th.

Congenital heart defects involve the malformation in one or more structures of the heart or blood vessels while the fetus is developing in the uterus. According to the American Heart Association, congenital heart disease affects about 35,000 infants each year, and claims the lives of "nearly twice as many children" annually in the United States "as die from all forms of childhood cancer". Symptoms may arise at birth, during childhood, and sometimes not until adulthood.


Working with Drosophilia melanogaster, also known as the fruitfly, the researchers showed that the Slit and Robo proteins accumulate in a specific alignment during the formation of the heart tube, a linear tube representing the primitive heart before its cells assume their rhythmical contractile functions. Proper alignment of the heart tube cells is critical for heart assembly and proper shape, or morphology. The researchers found that mutation or misexpression of these proteins leads to misalignment of the heart tube and results in observed heart defects.

"Although there is much interest in the understanding of the basis of heart tube assembly, little is known about the underlying molecular and genetic mechanisms that orchestrate heart development," said Rolf Bodmer, Ph.D., Professor at the Burnham Institute for Medical Research and corresponding author in the study. "These findings provide understanding of early controls in heart development, and we are eager to conduct further studies to reveal how these controls are executed."

Because Robo and Slit proteins are conserved in higher organisms, these discoveries may soon lead to a search for mutations in the corresponding human genes in patients with congenital heart defects, and may one day be applied to develop diagnostic tests that detect mutations in Robo and Slit for the early diagnosis of congenital heart defects.

Dr. Bodmer is known internationally for his work on the development of the heart in Drosophila. Medical scientists have long relied on fruitflies as a model for studying the genetics of embryonic development. It is now known, as Dr. Bodmer proposed a decade ago, that formation of the cardiac tube, the genesis of the heart, is a similar process in fruitflies and humans.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>