Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers provide study of early heart development and underlying cause of congenital heart defects

21.12.2005


Studies in drosophila genetics inform development of human heart



Researchers at The Burnham Institute for Medical Research have provided detailed insights into the early formation of the heart. A team lead by Dr. Rolf Bodmer found that two proteins, called Robo and Slit, are required for normal development of the heart and that malfunction of either of these proteins severely impacts the heart’s structure, resulting in congenital heart defects. These findings were published in the journal Current Biology released on December 20th.

Congenital heart defects involve the malformation in one or more structures of the heart or blood vessels while the fetus is developing in the uterus. According to the American Heart Association, congenital heart disease affects about 35,000 infants each year, and claims the lives of "nearly twice as many children" annually in the United States "as die from all forms of childhood cancer". Symptoms may arise at birth, during childhood, and sometimes not until adulthood.


Working with Drosophilia melanogaster, also known as the fruitfly, the researchers showed that the Slit and Robo proteins accumulate in a specific alignment during the formation of the heart tube, a linear tube representing the primitive heart before its cells assume their rhythmical contractile functions. Proper alignment of the heart tube cells is critical for heart assembly and proper shape, or morphology. The researchers found that mutation or misexpression of these proteins leads to misalignment of the heart tube and results in observed heart defects.

"Although there is much interest in the understanding of the basis of heart tube assembly, little is known about the underlying molecular and genetic mechanisms that orchestrate heart development," said Rolf Bodmer, Ph.D., Professor at the Burnham Institute for Medical Research and corresponding author in the study. "These findings provide understanding of early controls in heart development, and we are eager to conduct further studies to reveal how these controls are executed."

Because Robo and Slit proteins are conserved in higher organisms, these discoveries may soon lead to a search for mutations in the corresponding human genes in patients with congenital heart defects, and may one day be applied to develop diagnostic tests that detect mutations in Robo and Slit for the early diagnosis of congenital heart defects.

Dr. Bodmer is known internationally for his work on the development of the heart in Drosophila. Medical scientists have long relied on fruitflies as a model for studying the genetics of embryonic development. It is now known, as Dr. Bodmer proposed a decade ago, that formation of the cardiac tube, the genesis of the heart, is a similar process in fruitflies and humans.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>