Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing still smart choice, despite uncertainties

21.12.2005


Technique to pick healthy embryos highly reliable, but small margin of error remains



Screening embryos for genetic diseases during in vitro fertilization offers couples the best chance for a healthy child, but a genetic glitch could potentially cause doctors to misdiagnose a small fraction of them, University of Florida researchers say.

Citing concerns about the accuracy of preimplantation genetic diagnosis, the method many practitioners use to pick the healthiest embryos during IVF, UF researchers set out to study the procedure. Their work, described during a recent meeting of the American Society of Reproductive Medicine, reveals the technique is actually highly reliable. But because there is a slim chance a genetic abnormality can cause doctors to misdiagnose embryos, some concerns still need to be addressed, the researchers said.


Preimplantation genetic diagnosis has been used for more than a decade to screen embryos for hereditary diseases such as Down syndrome and other abnormalities. To do this, one cell from an eight-cell embryo is extracted and examined for chromosomal defects.

However, as many as half these embryos spawn cells with different genetic information as they divide, giving doctors an inaccurate idea of how the embryo will continue to develop, said Larissa Kovalinskaia, M.S., a UF research associate with the College of Medicine’s IVF program. While many embryos with this abnormality - called chromosomal mosaicism - stop developing early, some go on to be born. Because these embryos’ cells contain different sets of chromosomes, doctors cannot always accurately screen them for genetic diseases, Kovalinskaia said.

"As more data were coming out, saying that as many as 50 percent of (IVF) embryos were mosaic, we started worrying about the accuracy of preimplantation genetic diagnosis," she said. "When you take one cell, does it represent the entire embryo? What we’ve shown is that we can rely on PGD."

UF researchers estimate less than 3 percent of healthy embryos are discarded as abnormal and only 1.5 percent are implanted with undetected genetic defects because of mosaicism.

To find out how big of a problem mosaicism is, the researchers developed a mathematical model using data from UF’s IVF program and other programs to illustrate the different paths an embryo takes as it develops. While half of embryos turn out normal, with no mosaicism, the other half produce irregular cells as they divide.

Embryos that become mosaic after their cells divide twice typically stop progressing by the time they have accumulated eight cells. Too many of their cells have chromosomes that don’t match and these mixed messages lead the embryo to stop developing, Kovalinskaia said.

Embryos with only one or two irregular cells still have a chance to develop normally though, she said. These embryos tend to not develop this abnormality until after their cells have divided a third time, typically the time when doctors perform preimplantation genetic diagnosis. This is where the problem with diagnosis occurs, researchers say.

"Our pathway concept may help to explain the observed outcomes during preimplantation diagnosis," said Kenneth Drury, Ph.D., director of the UF IVF and Andrology Laboratory and a clinical professor in the College of Medicine who was one of the researchers. "When we biopsy an eight-cell embryo, if we choose (the one) normal cell in an abnormal embryo, we may think that embryo is normal and transfer it.

"This occurs about 1 percent of the time, which means 99 percent of the time we will be accurate. Again the error is not due to a technical mistake but to natural errors occurring during early cell division in the embryo."

Extracting test cells before the embryo divides a third time could reduce the number of misdiagnoses because of mosaicism, the UF researchers suggest. Improving culture conditions could help too, Kovalinskaia said.

But the small margin of error shouldn’t stop couples from having preimplantation genetic diagnosis, said Jamie Grifo, M.D., Ph.D., a professor of obstetrics and gynecology at New York University. The testing can work miracles for women prone to miscarriages or who carry genetic diseases, he said.

"If you are at risk for genetic diseases, it changes your outlook on starting a family," he said. "PGD allows them to get pregnant. It’s a dramatic improvement when it works."

More than 45,000 babies are born each year with the aid of assisted reproductive technologies like IVF, according to the Centers for Disease Control and Prevention. The use of IVF has declined in recent years, but Grifo said that is largely because baby boomers are leaving their childbearing years. Technologies like preimplantation genetic diagnosis have helped too, making IVF more accurate, he said.

"There has been a lot of progress," Grifo said. "It’s helped many patients."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>