Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic testing still smart choice, despite uncertainties


Technique to pick healthy embryos highly reliable, but small margin of error remains

Screening embryos for genetic diseases during in vitro fertilization offers couples the best chance for a healthy child, but a genetic glitch could potentially cause doctors to misdiagnose a small fraction of them, University of Florida researchers say.

Citing concerns about the accuracy of preimplantation genetic diagnosis, the method many practitioners use to pick the healthiest embryos during IVF, UF researchers set out to study the procedure. Their work, described during a recent meeting of the American Society of Reproductive Medicine, reveals the technique is actually highly reliable. But because there is a slim chance a genetic abnormality can cause doctors to misdiagnose embryos, some concerns still need to be addressed, the researchers said.

Preimplantation genetic diagnosis has been used for more than a decade to screen embryos for hereditary diseases such as Down syndrome and other abnormalities. To do this, one cell from an eight-cell embryo is extracted and examined for chromosomal defects.

However, as many as half these embryos spawn cells with different genetic information as they divide, giving doctors an inaccurate idea of how the embryo will continue to develop, said Larissa Kovalinskaia, M.S., a UF research associate with the College of Medicine’s IVF program. While many embryos with this abnormality - called chromosomal mosaicism - stop developing early, some go on to be born. Because these embryos’ cells contain different sets of chromosomes, doctors cannot always accurately screen them for genetic diseases, Kovalinskaia said.

"As more data were coming out, saying that as many as 50 percent of (IVF) embryos were mosaic, we started worrying about the accuracy of preimplantation genetic diagnosis," she said. "When you take one cell, does it represent the entire embryo? What we’ve shown is that we can rely on PGD."

UF researchers estimate less than 3 percent of healthy embryos are discarded as abnormal and only 1.5 percent are implanted with undetected genetic defects because of mosaicism.

To find out how big of a problem mosaicism is, the researchers developed a mathematical model using data from UF’s IVF program and other programs to illustrate the different paths an embryo takes as it develops. While half of embryos turn out normal, with no mosaicism, the other half produce irregular cells as they divide.

Embryos that become mosaic after their cells divide twice typically stop progressing by the time they have accumulated eight cells. Too many of their cells have chromosomes that don’t match and these mixed messages lead the embryo to stop developing, Kovalinskaia said.

Embryos with only one or two irregular cells still have a chance to develop normally though, she said. These embryos tend to not develop this abnormality until after their cells have divided a third time, typically the time when doctors perform preimplantation genetic diagnosis. This is where the problem with diagnosis occurs, researchers say.

"Our pathway concept may help to explain the observed outcomes during preimplantation diagnosis," said Kenneth Drury, Ph.D., director of the UF IVF and Andrology Laboratory and a clinical professor in the College of Medicine who was one of the researchers. "When we biopsy an eight-cell embryo, if we choose (the one) normal cell in an abnormal embryo, we may think that embryo is normal and transfer it.

"This occurs about 1 percent of the time, which means 99 percent of the time we will be accurate. Again the error is not due to a technical mistake but to natural errors occurring during early cell division in the embryo."

Extracting test cells before the embryo divides a third time could reduce the number of misdiagnoses because of mosaicism, the UF researchers suggest. Improving culture conditions could help too, Kovalinskaia said.

But the small margin of error shouldn’t stop couples from having preimplantation genetic diagnosis, said Jamie Grifo, M.D., Ph.D., a professor of obstetrics and gynecology at New York University. The testing can work miracles for women prone to miscarriages or who carry genetic diseases, he said.

"If you are at risk for genetic diseases, it changes your outlook on starting a family," he said. "PGD allows them to get pregnant. It’s a dramatic improvement when it works."

More than 45,000 babies are born each year with the aid of assisted reproductive technologies like IVF, according to the Centers for Disease Control and Prevention. The use of IVF has declined in recent years, but Grifo said that is largely because baby boomers are leaving their childbearing years. Technologies like preimplantation genetic diagnosis have helped too, making IVF more accurate, he said.

"There has been a lot of progress," Grifo said. "It’s helped many patients."

April Frawley Birdwell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>