Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma risk only partially associated vith exposure to UVB from sunlight

21.12.2005


Researchers at The University of Texas M. D. Anderson Cancer Center have found that the risk of developing melanoma, the most deadly form of skin cancer, is only partially associated with exposure to ultraviolet B (UVB) radiation, the rays in sunlight that increase in summer and cause sunburn.

The report in the Dec. 21 issue of the Journal of the National Cancer Institute also indicates that only nonmalignant skin cancers (basal and squamous cell carcinoma) are strongly associated with exposure to UVB radiation.

That does not mean, however, that sunbathing poses a minimal risk of developing melanoma. Researchers say that ultraviolet A (UVA) radiation, the rays in sunlight that reach the deeper layers of skin and are associated with signs of aging, can damage the DNA in melanocytes, the pigment-producing cells that give rise to melanoma.



"Although we have refined the common wisdom that excess sun exposure is always associated with increased risk of skin cancer, the take-home message for the public is still the same - limit sun exposure and use a sunscreen that blocks both UVA and UVB rays," says the study’s lead investigator, Qingyi Wei, M.D., Ph.D., professor in the Department of Epidemiology.

The study is a painstaking analysis of the ability of UVB radiation to damage a cell’s chromosomes. Chromosomal injury is one way cells can become cancerous; damage to the genes that make up the chromosome is another, and Wei already has shown in previous studies that melanoma patients often have a reduced capacity to repair the DNA damage that results from UVB exposure.

In the novel study, researchers looked at how often chromosomes break in cells from skin cancer patients compared with cells from a control group.

Wei and his team of 16 collaborators at M. D. Anderson gathered white blood cells from 469 skin cancer patients treated at M. D. Anderson (238 of whom were diagnosed with melanoma) as well as from 329 cancer-free control subjects.

Using the theory that the ability to induce breaks in a cell’s chromosome is, in part, based on a person’s genes, and would therefore hold true for all types of body cells, the investigators exposed the blood cells to excess UVB exposure. These findings were linked to whether each of the study participants had one of the three forms of skin cancer. They found that UVB radiation affects cell chromosomes more severely in patients with nonmalignant basal and squamous cell carcinoma than those in melanoma patients. The frequency of UVB-induced chromosome breaks was higher in nonmalignant skin cancer patients than in the control group, but was the same in melanoma patients and the control group. In fact, a higher frequency of chromosomal breaks was associated with a more than twofold-increased risk for both basal cell and squamous cell carcinoma, Wei says.

These findings indicate that in skin cells it is better to have broken chromosomes that cause cells to die or acquire a "simple," treatable cancer, than for the skin cells to remain intact but sustain genetic damage that can lead to much more serious cancer, Wei adds.

They also found a strong dose-response relationship among UVB radiation, chromosome breaks and squamous cell carcinoma. Sun exposure increases a person’s risk of developing squamous cell carcinoma. Investigators discovered, however, that the risk of developing basal cell carcinoma increases to a certain point, given exposure to UVB radiation, but does not continue to increase with excess sun exposure. These experimental data fit well to the incidence data of skin cancers in the general population.

Wei says these conclusions may help explain for why nonmalignant skin cancers are so common - more than 1 million cases are diagnosed each year in the United States - and why they are so easy to treat. Squamous skin cells lie near the top of the skin’s layers, while basal skin cells lie near the base of the skin’s layers. In both cases, these cells actively reproduce. When their chromosomes are damaged by sunlight, the cells often die or form a simple kind of cancer at the surface that is nonmalignant and easy to remove by surgery or treat in other ways, he says.

Melanoma, on the other hand, is now known to be resistant to chromosomal breaks from UVB radiation, which means that the cell’s chromosomes stay intact long enough to continually amass genetic damage from UVA radiation, according to previously published data. "This allows the cells to hang in there longer, potentially passing on genetic mutations to daughter cells which can result in a cancer that is not sensitive to treatment," Wei says. "If you think of a chromosome as walls that hold up the house, which is the cell, and DNA as individual bricks, then in common squamous and basal cell carcinoma, UV in sunlight knocks down the walls, and usually these cells die or form a nonmalignant cancer," says Wei.

"But if UV sunlight doesn’t hurt the walls too much, but endangers the house with broken bricks, this can form a much more malignant cancer in which the cell can continue to replicate, passing on to daughter cells genetic mutations that can lead to a dangerous cancer," he says.

According to the National Cancer Institute, close to 60,000 cases of melanoma are expected in 2005, along with more than 7,700 associated deaths.

Stephanie Dedeaux | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>