Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma risk only partially associated vith exposure to UVB from sunlight

21.12.2005


Researchers at The University of Texas M. D. Anderson Cancer Center have found that the risk of developing melanoma, the most deadly form of skin cancer, is only partially associated with exposure to ultraviolet B (UVB) radiation, the rays in sunlight that increase in summer and cause sunburn.

The report in the Dec. 21 issue of the Journal of the National Cancer Institute also indicates that only nonmalignant skin cancers (basal and squamous cell carcinoma) are strongly associated with exposure to UVB radiation.

That does not mean, however, that sunbathing poses a minimal risk of developing melanoma. Researchers say that ultraviolet A (UVA) radiation, the rays in sunlight that reach the deeper layers of skin and are associated with signs of aging, can damage the DNA in melanocytes, the pigment-producing cells that give rise to melanoma.



"Although we have refined the common wisdom that excess sun exposure is always associated with increased risk of skin cancer, the take-home message for the public is still the same - limit sun exposure and use a sunscreen that blocks both UVA and UVB rays," says the study’s lead investigator, Qingyi Wei, M.D., Ph.D., professor in the Department of Epidemiology.

The study is a painstaking analysis of the ability of UVB radiation to damage a cell’s chromosomes. Chromosomal injury is one way cells can become cancerous; damage to the genes that make up the chromosome is another, and Wei already has shown in previous studies that melanoma patients often have a reduced capacity to repair the DNA damage that results from UVB exposure.

In the novel study, researchers looked at how often chromosomes break in cells from skin cancer patients compared with cells from a control group.

Wei and his team of 16 collaborators at M. D. Anderson gathered white blood cells from 469 skin cancer patients treated at M. D. Anderson (238 of whom were diagnosed with melanoma) as well as from 329 cancer-free control subjects.

Using the theory that the ability to induce breaks in a cell’s chromosome is, in part, based on a person’s genes, and would therefore hold true for all types of body cells, the investigators exposed the blood cells to excess UVB exposure. These findings were linked to whether each of the study participants had one of the three forms of skin cancer. They found that UVB radiation affects cell chromosomes more severely in patients with nonmalignant basal and squamous cell carcinoma than those in melanoma patients. The frequency of UVB-induced chromosome breaks was higher in nonmalignant skin cancer patients than in the control group, but was the same in melanoma patients and the control group. In fact, a higher frequency of chromosomal breaks was associated with a more than twofold-increased risk for both basal cell and squamous cell carcinoma, Wei says.

These findings indicate that in skin cells it is better to have broken chromosomes that cause cells to die or acquire a "simple," treatable cancer, than for the skin cells to remain intact but sustain genetic damage that can lead to much more serious cancer, Wei adds.

They also found a strong dose-response relationship among UVB radiation, chromosome breaks and squamous cell carcinoma. Sun exposure increases a person’s risk of developing squamous cell carcinoma. Investigators discovered, however, that the risk of developing basal cell carcinoma increases to a certain point, given exposure to UVB radiation, but does not continue to increase with excess sun exposure. These experimental data fit well to the incidence data of skin cancers in the general population.

Wei says these conclusions may help explain for why nonmalignant skin cancers are so common - more than 1 million cases are diagnosed each year in the United States - and why they are so easy to treat. Squamous skin cells lie near the top of the skin’s layers, while basal skin cells lie near the base of the skin’s layers. In both cases, these cells actively reproduce. When their chromosomes are damaged by sunlight, the cells often die or form a simple kind of cancer at the surface that is nonmalignant and easy to remove by surgery or treat in other ways, he says.

Melanoma, on the other hand, is now known to be resistant to chromosomal breaks from UVB radiation, which means that the cell’s chromosomes stay intact long enough to continually amass genetic damage from UVA radiation, according to previously published data. "This allows the cells to hang in there longer, potentially passing on genetic mutations to daughter cells which can result in a cancer that is not sensitive to treatment," Wei says. "If you think of a chromosome as walls that hold up the house, which is the cell, and DNA as individual bricks, then in common squamous and basal cell carcinoma, UV in sunlight knocks down the walls, and usually these cells die or form a nonmalignant cancer," says Wei.

"But if UV sunlight doesn’t hurt the walls too much, but endangers the house with broken bricks, this can form a much more malignant cancer in which the cell can continue to replicate, passing on to daughter cells genetic mutations that can lead to a dangerous cancer," he says.

According to the National Cancer Institute, close to 60,000 cases of melanoma are expected in 2005, along with more than 7,700 associated deaths.

Stephanie Dedeaux | EurekAlert!
Further information:
http://www.mdanderson.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>