Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patient outcomes linked to biomarker levels by quantitative technology


Researchers in the Department of Pathology at Yale University School of Medicine report that when using current pathology methods of biomarker detection, the concentration of antibodies used dramatically alters the apparent relationship of biomarker level to clinical outcome. The paper appears in the December issue of the Journal of the National Cancer Institute.

A multiplex image analyzed by AQUA to quantitatively analyze protein expression. Different colors represent compartments where protein concentration is measured; the number of pixels of each color is compared to the total number of pixels to give protein concentration.

The study, led by David L. Rimm, M.D., associate professor of pathology and member of the Yale Cancer Center, was designed to make sense of inconsistencies in traditional immunohistochemistry, a technique widely used for evaluating biomarker levels. The researchers evaluated levels of the common breast cancer biomarkers HER2, p53 and estrogen receptor (ER) to determine the importance of antibody standardization. They used a tissue microarray format containing specimens from 250 breast cancer patients with available long-term survival data.

“We found that the antibody concentration chosen by pathologists can dramatically affect and even reverse the apparent relationships between biomarker expression levels and patient outcomes,” said Rimm. “This work challenges the way pathologists have viewed immunohistochemistry, and points out that biomarker expression studies need further development and analysis.”

To standardize measurements, the study used the Automated Quantitative Analysis (AQUA™) technology, a system originally developed to assess biomarker expression in tissue sections. It combined fluorescence-based imaging with automated microscopy and high-throughput tissue microarray analysis technologies.

Their results with AQUA™ showed that when a high antibody concentration was used in the assay, low HER2 marker levels were associated with decreased survival. However, if a low antibody concentration was used, high HER2 levels were associated with decreased survival. Results for p53 were similar to those for HER2 but, increased ER levels were associated with increased survival regardless of antibody concentration.

These results suggest that an antibody concentration arbitrarily chosen by the pathologist may not be adequate for the expression range of the biomarker being tested. The apparent reversal of the relationship between marker level and survival rate occurs when there is a non-linear relationship between the antibody concentration and its target. ER was predicted consistently due to a linear relationship.

The findings are of importance as the relationship between protein expression and disease has an increasing role in patient treatments and individualized therapies. Variations in biomarker levels and patient response or outcome have been previously highlighted in the literature, but until now researchers have had no effective method to standardize detection techniques. Creating a new quantitative level of standardization may improve current pathology methods and practices.

“Biomarkers may have the power to provide diagnostic, therapeutic, and prognostic information for personalized medicine.” said Donald Earl Henson, M.D., of the George Washington University Cancer Institute, in “Back to the Drawing Board on Immunohistochemistry and Predictive Factors,” an accompanying editorial. “However, immunohistochemistry, a popular technique for evaluating biomarker expression, may contain procedural flaws that jeopardize its promise.”

In follow up to the editorial, Dennis C. Sgroi, M.D., director of Breast Pathology at the Massachusetts General Hospital and an associate professor of Pathology at the Harvard Medical School noted, “AQUA has proven to be a very effective tool in determining the flaws and inconsistencies associated with immunohistochemistry. These findings warrant review by pathologists in questioning the validity of current practices and before the data from predictive biomarker studies is formally integrated into practice and patient treatment.”

Co-authors at Yale include Anthony McCabe, Marisa Dolled-Filhart, Robert L. Camp. The study was funded by grants from The Department of Defense Breast Cancer Research Program, the National Cancer Institute of the National Institutes of Health, the Greenwich Breast Cancer Alliance, and the Patrick and Catherine Weldon Donaghue Foundation for Medical Research.

Camp and Rimm are founders, stockholders, and consultants to HistoRx, a private corporation to which Yale University has given exclusive rights to produce and distribute the software and technologies embedded in AQUA™. For further information contact Robert A. Curtis,, or 203-498-7500 or Courtney Harris, 617-761-6744

Citation: J. National Cancer Inst. : (December 21, 2005)

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>