Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel enzyme offers new look at gene regulation


UNC scientists’ findings have diverse implications

Scientists at the University of North Carolina at Chapel Hill have purified a novel protein and have shown it can alter gene activity by reversing a molecular modification previously thought permanent.

In the study, the authors showed that a protein called JHDM1A is able to remove a methyl group from histone H3, one of four histone proteins bound to all genes. Until just last year, the addition of a methyl group to a histone had been regarded as irreversible.

"That histones can become methylated has been known for over three decades, and just now we’re learning that those methyl groups can also be removed," said Dr. Yi Zhang, the lead author.

Zhang is professor of biochemistry and biophysics at UNC’s School of Medicine and the university’s first Howard Hughes Medical Institute investigator. He also is a member of the UNC Lineberger Comprehensive Cancer Center.

The new study is now online in the journal Nature.

"Human genes are so tightly compact within the nucleus that if the DNA of a single cell were unwound and stretched, it would be a line of about two meters in length," said Zhang. "Histones are necessary to package the DNA so that it fits inside a cell’s nucleus."

Because they are so intimately associated with DNA, even slight chemical alterations of histones can have profound effects on nearby genes. Depending on the precise location and how many methyl groups are added, their presence can either switch affected genes on or off.

The first enzyme to remove methyl groups from histones, or histone demethylase, was identified last year. This was a breakthrough in the study of histone modifications, but Zhang thought pieces of the puzzle were still missing.

"We hypothesized that there were more demethylase enzymes out there for two reasons," Zhang said. "For one, the previous demethylase identified, called LSD1, could not remove a chain of three methyl groups from a histone, or a trimethyl group. Secondly, common baker’s yeast does not have LSD1, although it does have proteins adding methyl groups to histones."

Zhang devised a biochemical strategy to isolate proteins that could remove methyl from histones inside a test tube. The result was the identification of a novel protein, JHDM1A, named for JmjC histone demethylase 1A. A similar protein exists in baker’s yeast and has the potential to remove trimethyl groups.

JmjC is only a section of the entire JHDM1A protein, but is required for its demethylase activity. The authors showed that disruption of JmjC prevents JHDM1A from removing histone methyl groups.

Importantly, the JmjC section of JHDM1A, or "JmjC domain," can be found in other proteins, even when the proteins share little else in common. Database searches predict more than 100 total proteins found in organisms as diverse as bacteria and man contain the JmjC domain. This suggests that many other proteins may act similarly to methyl groups from histones or other proteins.

The implications of the new findings are as diverse as the proteins that contain a JmjC domain. For example, hair loss occurs in individuals with mutations in the JmjC domain of a protein called "hairless," possibly due to defects in the appropriate removal of histone methyl groups.

"Given the large numbers of JmjC domain-containing proteins that exist in diverse organisms ranging from yeast to human, our discovery will keep many people in the field busy for the years to come," said Zhang.

L. H. Lang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>