Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel enzyme offers new look at gene regulation

21.12.2005


UNC scientists’ findings have diverse implications



Scientists at the University of North Carolina at Chapel Hill have purified a novel protein and have shown it can alter gene activity by reversing a molecular modification previously thought permanent.

In the study, the authors showed that a protein called JHDM1A is able to remove a methyl group from histone H3, one of four histone proteins bound to all genes. Until just last year, the addition of a methyl group to a histone had been regarded as irreversible.


"That histones can become methylated has been known for over three decades, and just now we’re learning that those methyl groups can also be removed," said Dr. Yi Zhang, the lead author.

Zhang is professor of biochemistry and biophysics at UNC’s School of Medicine and the university’s first Howard Hughes Medical Institute investigator. He also is a member of the UNC Lineberger Comprehensive Cancer Center.

The new study is now online in the journal Nature.

"Human genes are so tightly compact within the nucleus that if the DNA of a single cell were unwound and stretched, it would be a line of about two meters in length," said Zhang. "Histones are necessary to package the DNA so that it fits inside a cell’s nucleus."

Because they are so intimately associated with DNA, even slight chemical alterations of histones can have profound effects on nearby genes. Depending on the precise location and how many methyl groups are added, their presence can either switch affected genes on or off.

The first enzyme to remove methyl groups from histones, or histone demethylase, was identified last year. This was a breakthrough in the study of histone modifications, but Zhang thought pieces of the puzzle were still missing.

"We hypothesized that there were more demethylase enzymes out there for two reasons," Zhang said. "For one, the previous demethylase identified, called LSD1, could not remove a chain of three methyl groups from a histone, or a trimethyl group. Secondly, common baker’s yeast does not have LSD1, although it does have proteins adding methyl groups to histones."

Zhang devised a biochemical strategy to isolate proteins that could remove methyl from histones inside a test tube. The result was the identification of a novel protein, JHDM1A, named for JmjC histone demethylase 1A. A similar protein exists in baker’s yeast and has the potential to remove trimethyl groups.

JmjC is only a section of the entire JHDM1A protein, but is required for its demethylase activity. The authors showed that disruption of JmjC prevents JHDM1A from removing histone methyl groups.

Importantly, the JmjC section of JHDM1A, or "JmjC domain," can be found in other proteins, even when the proteins share little else in common. Database searches predict more than 100 total proteins found in organisms as diverse as bacteria and man contain the JmjC domain. This suggests that many other proteins may act similarly to methyl groups from histones or other proteins.

The implications of the new findings are as diverse as the proteins that contain a JmjC domain. For example, hair loss occurs in individuals with mutations in the JmjC domain of a protein called "hairless," possibly due to defects in the appropriate removal of histone methyl groups.

"Given the large numbers of JmjC domain-containing proteins that exist in diverse organisms ranging from yeast to human, our discovery will keep many people in the field busy for the years to come," said Zhang.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>