Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UNC experiments show very weak chlorine solutions can kill noroviruses

21.12.2005


Chlorine solutions much weaker than previously believed can still be used to kill more than 99 percent of noroviruses, the chief cause of outbreaks of gastrointestinal illness around the world, a new University of North Carolina at Chapel Hill study concludes.



Researchers presented their findings over the weekend at the 2005 International Conference on Antimicrobial Agents and Chemotherapy, which ends today (Dec. 19) in Washington, D.C. They discovered for the first time that dilute solutions of hypochlorous acid, or free chlorine, as low as 200 -- or even 20 -- milligrams per liter will completely inactivate noroviruses on surfaces such as stainless steel and ceramic tile.

Dr. Mark D. Sobsey, professor of environmental sciences and engineering at the UNC School of Public Health, and postdoctoral fellow Dr. Geunwoo Park conducted the research. They also found that the dilute chemical worked quickly -- in five minutes or less.


“This is good news since noroviruses are the leading cause of viral gastroenteritis,” said Sobsey, director of the school’s Environmental Health Microbiology Laboratories. “They have caused countless outbreaks of gastroenteritis in health-care facilities, schools, food establishments, hotels and resorts and on cruise ships.”

Decontamination of affected facilities can prove difficult since the viruses persist on environmental surfaces and are resistant to some widely used sanitizers, he said. And they are highly infectious even at low doses.

In their studies, the scientists dried a group II norovirus -- the predominant form circulating in the USA -- and a widely used indicator virus, bacteriophage MS2 infecting E. coli, on stainless steel and ceramic surfaces, Sobsey said. After treating those surfaces with a 200 milligrams per liter solution of hypochlorous acid for one minute, they tested them to learn how much virus remained. The viruses dropped 99.99 percent.

“Even a lower concentration of 20 milligrams per liter of hypochlorous acid reduced the viruses by 99.9 percent in five minutes,” he said. “Our results show that environmental surfaces can be readily decontaminated of noroviruses with dilute hypochlorous acid, which is the active ingredient of household bleaches like Chlorox.”

In practical terms, that means that household bleach can be diluted by a factor of 1,000 and still work, Sobsey said. In all likelihood, it would even disinfect noroviruses on hard surfaces if diluted by a factor of 10,000. At full strength, the bleach contains 50,000 to 60,000 milligrams per liter of chlorine.

“Previously, many people have diluted household bleach to one part in 10, which is still a strongly corrosive solution,” he said. “They often are reluctant to use at that strength since it can mar surfaces and make them look bad.”

Regularly disinfecting bathrooms, kitchens and other areas prone to harbor viruses and bacteria is important because outbreaks of gastrointestinal illness, which include nausea, vomiting and diarrhea, can kill people, especially if they are old or dehydrated, Sobsey said. While most otherwise healthy patients recover after a few days of discomfort even without treatment, noroviruses can continue to sicken others until facilities have been thoroughly sanitized with products proven to be effective.

In the research, Sobsey and Park generated hypochlorous acid from a dilute solution of salt using an electrolytic generator made by Sterilox Technologies. That company, which supported the research, manufactures on-site generators of room-temperature, high-level hypochlorous acid disinfectant for use in biomedical, food production, water treatment and other applications.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>