Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists sequence DNA of woolly mammoth

20.12.2005


Experts in ancient DNA from McMaster University (Canada) have teamed up with genome researchers from Penn State University (USA) for the investigation of permafrost bone samples from Siberia. The project also involved paleontologists from the American Museum of Natural History (USA) and researchers from Russia, the United Kingdom, France, and Germany. The researchers’ report on the first genomic sequences from a woolly mammoth will be published on 22 December 2005 by the journal Science on the Science Express website. This majestic mammal roamed grassy plains of the Northern Hemisphere until it became extinct about 10,000 years ago. The scientific breakthrough allows for the first time comparion of this ancient species with today’s populations of African and Indian elephants, not just at the level of mitochondrial sequences, but also encompassing information from the nuclear genome.



Analyzing organellar DNA from mitochondria has been the only method of studying ancient DNA in the past, as it is more tractable due to its 1000-fold higher copy number per cell. However, the mitochondrial genome codes for only a tiny fraction of an organism’s genetic information -- 0.0006 percent in the case of a mammal. In contrast, most hereditary information is organized on chromosomes located in the cell’s nucleus (nuclear DNA). A mammoth was chosen for study in part because of its close evolutionary relationship to the African elephant, whose nuclear DNA sequence has been made publicly available by the Broad Institute in Cambridge, Massachusetts (USA). Using comparisons with elephant DNA, the researchers identified 13 million base pairs as being nuclear DNA from the mammoth, which they showed to be 98.5 percent identical to nuclear DNA from an African elephant.

The project became possible through the discovery of exceptionally well preserved remains of a mammoth skeleton in the permafrost soil of northern Siberia, in combination with a novel high-throughput sequencing technique that could cope with the heavily fragmented DNA retrieved from the organism’s mandible, its jaws. The bone material used in this study is approximately 28,000 years old, as was shown by beta-carbon dating analysis. This was a surprising finding, as it demonstrated that the analyzed material was frozen for more than 10,000 years before the maximum of the last ice age. The research team used a computational approach to demonstrate that an unprecedented 50 perecent of the bone DNA was indeed mammoth DNA, while the remaining genetic material was shown to belong to microorganisms living the tundra soil.


The study indicates that any organism that has been trapped in frozen ice or a permafrost environment for up to one million years will be an open book to the researchers. The search is now on for more specimens from plant, animal, and man that can illuminate the route evolution took on its way from the past to the present, and that can perhaps clarify the role environmental changes did play in the extinction of an entire species.

Initial funding for this study was provided by McMaster University, The Natural Sciences and Engineering Research Council of Canada, and Penn State University. The researchers now are seeking funding for the completion of the mammoth genome sequence and hope to conduct detailed comparative studies that include the genomes of African and Indian elephants.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>