Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant defenses prompt bacterial countermeasure in the form of ’island’ DNA excision

20.12.2005


Seeking to catch an arms-race maneuver in action, researchers have uncovered new evidence to explain how bacteria in the process of infecting a plant can shift molecular gears by excising specific genes from its genome to overcome the host plant’s specific defenses.



Throughout evolution – in the wild and in crops cultivated by humans – plants have developed systems for resisting the attack of microbial pathogens, while these microbes themselves have depended on their ability to alter molecular attack strategies in order to flourish. In the new work, researchers have essentially caught one step of this arms race in action, and they have shed light on the molecular mechanisms employed by a bacterial pathogen to survive in the face of its host plant’s defenses. The research is reported by John Mansfield and colleagues at Imperial College London, the University of the West of England, and the University of Bath.

Studying interactions between strains of the halo-bright pathogen and bean plants, the researchers found that the pathogenic bacteria essentially kicks out a section of its genome when it senses that its presence has been detected by the plant’s defense system. Excising this so-called "genomic island" eliminates production of the bacterial protein detected by the plant and allows a more stealthy – and successful – invasion.


The reason the strategy can be successful is that the plant has evolved to recognize the presence of only certain bacterial proteins as warnings of an infection. This means that the bacteria can, in principle, evade detection if it can shut down production of the offending protein or proteins. In their study, the authors identify within the halo-bright pathogen genome a special island of DNA that encodes one such offending protein. But this genomic island also encodes enzymes that, when switched on, snip the DNA on either side of the island, resulting in the excision of the entire island from the genome. The researchers found that this excision occurs in response to a so-called hypersensitive resistance reaction by the plant . The specific plant signals that are sensed by the pathogen to trigger the excision event remain to be identified.

If some bacterial proteins give away the presence of the pathogen to the plant, why are they and their surrounding genomic islands maintained by the bacteria at all? There are many genes included in the genomic island that is excised by the halo-bright strains studied here, and these other genes may well encode proteins that allow the pathogen to survive optimally in the light-intensive regions of eastern and southern Africa where these strains are found. Remarkably, bacteria that have excised the genomic island do not appear compromised in their ability to grow and cause disease within the host bean plant.

These findings offer a molecular explanation for how exposure to plant resistance mechanisms can directly drive the evolution of new virulent forms of a bacterial pathogen.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>