Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertility genes discovered at Rugters

20.12.2005


Rutgers geneticists have reported groundbreaking research on the genetics of fertility. They have discovered two genes, aptly named egg-1 and egg-2, required for fertilization to take place. The proteins encoded by these genes are similar to low density lipoprotein (LDL) receptors, known from cholesterol and fat metabolism but never before specifically implicated in fertilization.



One in six couples is experiencing fertility problems worldwide, and people are asking why. This is a question of great medical, social and economic importance – one that cannot be answered until the process of fertilization is more fully understood.

A team led by Andrew Singson, an assistant professor and Pavan Kadandale, a graduate student in the Singson lab at the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey, has taken a new and productive approach in this quest. The researchers found that in the absence of these two genes, the vital process of fertilization came to a halt. "What we learn in studying fertilization is not only important for this event, but also for the functioning of other cells in our bodies and for understanding many of those processes," Singson said.


Fertilization can be a paradigm for gaining insight into how cells interact over the life and development of multicellular organisms because it is one of the most basic of cell-cell interactions. The underlying cell biology is going to be universal with applications even in infectious diseases, such as AIDS, where the virus passes its genetic material to the cells it infects just as fertilization transmits sperm DNA to the egg, Singson explained.

Fertilization has primarily been studied in mammals or select marine invertebrates; but Singson and his group have instead turned to the lowly roundworm Caenorhabditis elegans (C. elegans), the first multicellular organism to have had its genome completely sequenced.

In addition to having its genome sequence, C. elegans offers particular advantages as a model system – one from which results can be extrapolated to other organisms including humans. The millimeter-long worm is transparent, allowing a clear view of its internal workings, and its short life cycle permits researchers to chronicle developmental and hereditary factors over generations. These properties have enabled researchers to use C. elegans for fundamental discoveries in other fields ranging from cell death and life span regulation to nervous system structure and function.

But the worm’s most important attribute as a model for this work may be its curious reproductive biology. Worms exist as males or hermaphrodites. When hermaphrodites are young they produce sperm and switch to produce eggs as adults. The Rutgers researchers were thus able to alter eggs in the hermaphrodites and use sperm from young males to test fertilization.

Genetic tools such as RNA interference (a way of removing gene function) and gene "knockout" mutants were used to see what would happen if worms lacked the function of egg-1 or egg-2 genes. The results were that the worms became sterile because fertilization had failed to occur. Normal sperm could no longer enter the eggs produced by egg-1 and egg-2 mutant hermaphrodites.

The traditional biochemical approach to studying fertilization has been to collect sperm and eggs and try to separate all the molecules or components of the cells, then discern how they might function in fertility. Singson admits that this has been productive, but he says that the definitive test for a role in fertilization or any biological process is to completely remove that molecule, or the gene that codes for it, and watch what happens.

"If you get infertility, then you know that the molecule is required for fertility, and this is our ’smoking gun.’ Basically, we are asking the animal to tell us what it requires for its fertility, and then we try to understand how it works on a molecular level," he said. "Our use of this genetic approach, which hasn’t been generally done in the past, is, indeed, groundbreaking."

Singson’s group picked the two "egg" genes as an educated guess based on research Singson had previously conducted with a group of sperm genes. Mutations in sperm genes prevented the sperm from fertilizing normal eggs. The hope was that the sperm genes, together with the newly discovered egg genes, would be the "lock and key" that mediate normal fertilization.

For a sperm to enter an egg, the sperm has to recognize the egg and ignore other sperm or cells in the environment, Singson explained. Then there are interactions needed to get the surface membranes of both sperm and egg to fuse, a critical initial step in fertilization.

The results described in the Dec. 20 issue of Current Biology by Kadandale et al. confirm that along with the previously identified sperm genes, the egg-1 and egg-2 encoded molecules are a key component of the cellular machinery required for successful fertilization in worms.

"Ultimately," Singson said, "it will be exciting to determine if defects in similar molecules can lead to human infertility."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>