Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blister-forming protein helps build blood vessels

20.12.2005


How does the body go about generating blood vessels? This question has been studied by a research team from Uppsala University in collaboration with colleagues from the National Institutes of Health in the United States. The findings show that a relatively unknown protein, CLIC4, forms blisters that later develop into the hollow interior of the vessel. The study is being published in the December 23 issue of Journal of Biological Chemistry.



The scientists in the project mapped what proteins change in different ways in connection with the formation of tubular structures, such as blood vessels. It turned out that a large number of proteins changed, and the researchers were able to determine the identity of 27 of them. The most exciting of these proteins is called CLIC4, intracellular chloride channel No. 4.

Not much is known about CLIC4, but studies of a related protein in roundworms show that it participates in the formation of the worm¹s excretion canal. There are several indications that tubular structures are created in a similar manner in primitive organisms and humans.


An important phase in this formation of a tube is the generation of tiny blisters, vesicles, inside the cell. These blisters merge into larger so-called vacuoles, which are the preliminary stages of the hollow interior of the tube. The research team from Uppsala and the United States investigated where CLIC4 is found in blood vessel cells and found the protein in the walls of tiny vesicles inside the cell. Then the scientists saw that the protein is to be found in certain vessels in tumors, where vessels are constantly being generated.

"This indicates that CLIC4 is involved in the formation of vessels," says Lena Claesson Welsh.

By inhibiting the capacity of blood vessel cells to produce CLIC4, the research team was able to show that the protein is needed for a blood vessel to be created.

"This is entirely new information. Previously it was not known what proteins regulate the process when vesicles merge into vacuoles to form the hollow interior of vessels," Lena Claesson Welsh explains.

Intensive research is underway to find out how blood vessels are generated. If we can understand how the tubes are created, we will be able to design better drugs to stop the production of vessels, which is of relevance to a number of diseases, such as cancer, diabetes, and chronic inflammations.

Linda Nohrstedt | alfa
Further information:
http://www.uu.se
http://www.uu.se/aktuellt

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>